Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pain ; 19(2): 260-70, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24942612

ABSTRACT

BACKGROUND: Mounting evidence points to individual contributions of tumour necrosis factor-alpha (TNF) and the c-Jun N-terminal kinase (JNK) pathway to the induction and maintenance of various pain states. Here we explore the role of spinal TNF and JNK in carrageenan-induced hypersensitivity. As links between TNF and JNK have been demonstrated in vitro, we investigated if TNF regulates spinal JNK activity in vivo. METHODS: TNF levels in lumbar cerebrospinal fluid (CSF) were measured by enzyme-linked immunosorbent assay, spinal TNF gene expression by real-time polymerase chain reaction and TNF protein expression, JNK and c-Jun phosphorylation by western blotting. The role of spinal TNF and JNK in inflammation-induced mechanical and thermal hypersensitivity was assessed by injecting the TNF inhibitor etanercept and the JNK inhibitors SP600125 and JIP-1 intrathecally (i.t.). TNF-mediated regulation of JNK activity was examined by assessing the effect of i.t. etanercept on inflammation-induced spinal JNK activity. RESULTS: TNF levels were increased in CSF and spinal cord following carrageenan-induced inflammation. While JNK phosphorylation followed the same temporal pattern as TNF, c-jun was only activated at later time points. Intrathecal injection of TNF and JNK inhibitors attenuated carrageenan-induced mechanical and thermal hypersensitivity. TNF stimulation induced JNK phosphorylation in cultured spinal astrocytes and blocking the spinal actions of TNF in vivo by i.t. injection of etanercept reduced inflammation-induced spinal JNK activity. CONCLUSIONS: Here we show that spinal JNK activity is dependent on TNF and that both TNF and the JNK signalling pathways modulate pain-like behaviour induced by peripheral inflammation.


Subject(s)
Hypersensitivity/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Spinal Cord/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Astrocytes/metabolism , Enzyme Activation , Inflammation/metabolism , MAP Kinase Signaling System/physiology , Male , Pain/metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Tumor Necrosis Factor-alpha/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...