Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(21): 14515-14522, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38708114

ABSTRACT

Multifunctional molecules responsive to light are highly desired as components for the construction of remotely controlled nanodevices. Here we present a DyIII single molecule magnet (SMM) comprising dithienylethene (dte) photochromic bridging ligands in the form of a pyridine (py) derivative: 1,2-bis((2-methyl-5-pyridyl)thie-3-yl)perfluorocyclo-pentene (dtepy). The title trinuclear compound {[DyIII(BHT)3]3(dtepy)2}·4C5H12 (1) was synthesized by combining the low-coordinate dysprosium complexes DyIII(BHT)3 (BHT = 2,6-di-tert-butyl-4-methylphenolate) with dtepy bridging ligands in the 'open' form using n-pentane as a completely inert solvent. The trinuclear molecule comprises two different DyIII centers due to its quasi-linear geometry: a central trigonal bipyramidal DyIII ion and two peripheral ones with an approximate trigonal pyramidal geometry. Thanks to that, 1 shows two types of SMM behavior which is slightly affected by the photoisomerization of the photochromic dtepy bridges. The impact of the photoisomerization on the magnetization dynamics was studied by means of alternating current (AC) magnetic susceptibility measurements for the 'open' and 'closed' forms of the molecules. The changes between the 'open' and 'closed' isomers were further investigated by IR and UV-vis spectroscopy, suggesting the co-existence of the ligand-related photochromism and single-molecule magnet behavior in 1. However, the powder X-ray diffraction studies indicate loss of structural order in the first photoisomerization step preventing in-depth studies.

2.
Inorg Chem Front ; 11(5): 1366-1380, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38420599

ABSTRACT

Multifunctional optical materials can be realized by combining stimuli-responsive photoluminescence (PL), e.g., optical thermometry, with non-linear optical (NLO) effects, such as second-harmonic generation (SHG). We report a novel approach towards SHG-active luminescent thermometers achieved by constructing unique iridium(iii) complexes, cis-[IrIII(CN)2(R,R-pinppy)2]- (R,R-pinppy = (R,R)-2-phenyl-4,5-pinenopyridine), bearing both a chiral 2-phenylpyridine derivative and cyanido ligands, the latter enabling the formation of a series of molecular materials: (TBA)[IrIII(CN)2(R,R-pinppy)2]·2MeCN (1) (TBA+ = tetrabutylammonium) and (nBu-DABCO)2[IrIII(CN)2(R,R-pinppy)2](i)·MeCN (2) (nBu-DABCO+ = 1-(n-butyl)-1,4-diazabicyclo-[2.2.2]octan-1-ium) hybrid salts, (TBA)2{[LaIII(NO3)3(H2O)0.5]2[IrIII(CN)2(R,R-pinppy)2]2} (3) square molecules, and {[LaIII(NO3)2(dmf)3][IrIII(CN)2(R,R-pinppy)2]}·MeCN (4) coordination chains. Thanks to the chiral pinene group, 1-4 crystallize in non-centrosymmetric space groups leading to SHG activity, while the N,C-coordination of ppy-type ligands to Ir(iii) centers generates visible charge-transfer (CT) photoluminescence. The PL characteristics are distinctly temperature-dependent which was utilized in achieving ratiometric optical thermometry below 220 K. The PL phenomena were rationalized by DFT/TD-DFT calculations indicating an MLCT-type of the emission in obtained Ir(iii) complexes with the rich vibronic structure providing a few emission bands that variously depend on temperature due to the role of thermally activated vibrations. As these crucial vibrational modes depend on the crystal lattice, the thermometry performance differs within 1-4 being the most efficient in 4 while the SHG is by far the best also for 4. This proves that pinene-functionalized cyclometalated dicyanidoiridates(iii) are great prerequisites for tunable PL-NLO conjunction with the most effective multifunctionality ensured by the insertion of these anions into bimetallic frameworks.

3.
Nature ; 625(7995): 508-515, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967579

ABSTRACT

Recent years have seen revived interest in computer-assisted organic synthesis1,2. The use of reaction- and neural-network algorithms that can plan multistep synthetic pathways have revolutionized this field1,3-7, including examples leading to advanced natural products6,7. Such methods typically operate on full, literature-derived 'substrate(s)-to-product' reaction rules and cannot be easily extended to the analysis of reaction mechanisms. Here we show that computers equipped with a comprehensive knowledge-base of mechanistic steps augmented by physical-organic chemistry rules, as well as quantum mechanical and kinetic calculations, can use a reaction-network approach to analyse the mechanisms of some of the most complex organic transformations: namely, cationic rearrangements. Such rearrangements are a cornerstone of organic chemistry textbooks and entail notable changes in the molecule's carbon skeleton8-12. The algorithm we describe and deploy at https://HopCat.allchemy.net/ generates, within minutes, networks of possible mechanistic steps, traces plausible step sequences and calculates expected product distributions. We validate this algorithm by three sets of experiments whose analysis would probably prove challenging even to highly trained chemists: (1) predicting the outcomes of tail-to-head terpene (THT) cyclizations in which substantially different outcomes are encoded in modular precursors differing in minute structural details; (2) comparing the outcome of THT cyclizations in solution or in a supramolecular capsule; and (3) analysing complex reaction mixtures. Our results support a vision in which computers no longer just manipulate known reaction types1-7 but will help rationalize and discover new, mechanistically complex transformations.


Subject(s)
Algorithms , Chemistry Techniques, Synthetic , Cyclization , Neural Networks, Computer , Terpenes , Cations/chemistry , Knowledge Bases , Terpenes/chemistry , Chemistry Techniques, Synthetic/methods , Biological Products/chemical synthesis , Biological Products/chemistry , Reproducibility of Results , Solutions
4.
Inorg Chem ; 61(41): 16295-16306, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36197744

ABSTRACT

The structures and magnetic properties of photoresponsive magnets can be controlled or fine-tuned by visible light irradiation, which makes them appealing as candidates for ternary memory devices: photochromic and photomagnetic at the same time. One of the strategies for photoresponsive magnetic systems is the use of photochromic/photoswitchable molecules coordinated to paramagnetic metal centers to indirectly influence their magnetic properties. Herein, we present two erbium(III)-based coordination systems: a trinuclear molecule {[ErIII(BHT)3]3(dtepy)2}.4C5H12 (1) and a 1D coordination chain {[ErIII(BHT)3(azopy)}n·2C5H12 (2), where the bridging photochromic ligands belong to the class of diarylethenes: 1,2-bis((2-methyl-5-pyridyl)thie-3-yl)perfluorocyclopentene (dtepy) and 4,4'-azopyridine (azopy), respectively (BHT = 2,6-di-tert-butyl-4-methylphenolate). Both compounds show slow dynamics of magnetization, typical for single-molecule magnets (SMMs) as revealed by alternating current (AC) magnetic susceptibility measurements. The trinuclear compound 1 also shows an immediate color change from yellow to dark blue in response to near-UV irradiation. Such behavior is typical for the photoisomerization of the open form of the ligand into its closed form. The color change can be reversed by exposing the closed form to visible light. The chain-like compound 2, on the other hand, does not show significant signs of the expected trans-cis photoisomerization of the azopyridine in response to UV irradiation and does not appear to show photoswitching behavior.

5.
Pharm Res ; 37(3): 37, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31965335

ABSTRACT

There was a mistake in the unit of clearance (Cl) in Table II. In addition, the descriptions of V1(ROL) and V1(GRMS-55) were imprecise and the reference number in the footnote below this table should be (9). The corrected Table appears below.

6.
Pharm Res ; 37(2): 19, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31899535

ABSTRACT

PURPOSE: This study aimed to assess the activity of two phosphodiesterase (PDE) inhibitors, namely GRMS-55 and racemic lisofylline ((±)-LSF)) in vitro and in animal models of immune-mediated disorders. METHODS: Inhibition of human recombinant (hr)PDEs and TNF-alpha release from LPS-stimulated whole rat blood by the studied compounds were assessed in vitro. LPS-induced endotoxemia, concanavalin A (ConA)-induced hepatitis, and collagen-induced arthritis (CIA) animal models were used for in vivo evaluation. The potency of the investigated compounds was evaluated using PK/PD and PK/PD/disease progression modeling. RESULTS: GRMS-55 is a potent hrPDE7A and hrPDE1B inhibitor, while (±)-LSF most strongly inhibits hrPDE3A and hrPDE4B. GRMS-55 decreased TNF-alpha levels in vivo and CIA progression with IC50 of 1.06 and 0.26 mg/L, while (±)-LSF with IC50 of 5.80 and 1.06 mg/L, respectively. Moreover, GRMS-55 significantly ameliorated symptoms of ConA-induced hepatitis. CONCLUSIONS: PDE4B but not PDE4D inhibition appears to be mainly engaged in anti-inflammatory activity of the studied compounds. GRMS-55 and (±)-LSF seem to be promising candidates for future studies on the treatment of immune-related diseases. The developed PK/PD models may be used to assess the anti-inflammatory and anti-arthritic potency of new compounds for the treatment of rheumatoid arthritis and other inflammatory disorders.

7.
Xenobiotica ; 49(10): 1209-1220, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30526201

ABSTRACT

1. Despite the number of favourable properties of lisofylline (LSF), clinical trials on this compound have not yielded the expected results yet. 2. The aims of this study were to evaluate the pharmacokinetics of LSF enantiomers in rats following intravenous, oral and subcutaneous administration of (±)-LSF and to assess the influence of experimental inflammatory disorders, such as multiple organ dysfunction syndrome and severe sepsis on LSF pharmacokinetics. 3. In addition, based on the results obtained an attempt was made to elucidate the possible reasons for the failure of LSF therapy in clinical trials carried out in patients with severe inflammatory disorders. 4. A subcutaneous route of (±)-LSF administration to rats is more favourable than an oral one due to a high bioavailability and a fast absorption of both LSF enantiomers. Pharmacokinetics of LSF in rats is significantly influenced by inflammatory diseases. Too low LSF serum levels might have been one of the reasons for clinical trial failures. A long-term i.v. infusion of LSF seems to be more effective compared to short-term multiple infusions that were used in clinical trials, as it may provide concentrations above IC50 for inhibition of both TNF-alpha release and cAMP degradation in serum for a longer period of time.


Subject(s)
Pentoxifylline/analogs & derivatives , Administration, Intravenous , Administration, Oral , Animals , Biological Availability , Cyclic AMP/metabolism , Drug Evaluation, Preclinical , Humans , Injections, Subcutaneous , Male , Pentoxifylline/pharmacokinetics , Pentoxifylline/pharmacology , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/blood
8.
Org Biomol Chem ; 16(7): 1118-1125, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29362764

ABSTRACT

A short synthesis of iminosugars and pipecolic acid derivatives has been realized through aldol addition of a pyruvate, a range of ketones and (S)-isoserinal, followed by catalytic reductive intramolecular amination. The stereoselective aldol reaction was achieved successfully by using tertiary amines or di-zinc aldol catalysts, thus constituting two parallel routes to optically pure products with good yields and high diastereoselectivities. These carbohydrate analogues may be the inhibitors of potent glycosidases and glycosyltransferases.

9.
J Med Chem ; 60(20): 8565-8579, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28934547

ABSTRACT

The focused set of new pyrrolidine-2,5-diones as potential broad-spectrum hybrid anticonvulsants was described. These derivatives integrate on the common structural scaffold the chemical fragments of well-known antiepileptic drugs such as ethosuximide, levetiracetam, and lacosamide. Such hybrids demonstrated effectiveness in two of the most widely used animal seizure models, namely, the maximal electroshock (MES) test and the psychomotor 6 Hz (32 mA) seizure models. Compound 33 showed the highest anticonvulsant activity in these models (ED50 MES = 79.5 mg/kg, ED50 6 Hz = 22.4 mg/kg). Compound 33 was also found to be effective in pentylenetetrazole-induced seizure model (ED50 PTZ = 123.2 mg/kg). In addition, 33 demonstrated effectiveness by decreasing pain responses in formalin-induced tonic pain, in capsaicin-induced neurogenic pain, and notably in oxaliplatin-induced neuropathic pain in mice. The pharmacological data of stereoisomers of compound 33 revealed greater anticonvulsant activity by R(+)-33 enantiomer in both MES and 6 Hz seizure models.


Subject(s)
Analgesics/pharmacology , Anticonvulsants/pharmacology , Pyrrolidines/pharmacology , Analgesics/chemistry , Animals , Anticonvulsants/chemistry , Male , Mice , Proton Magnetic Resonance Spectroscopy , Pyrrolidines/chemistry
10.
Naunyn Schmiedebergs Arch Pharmacol ; 390(10): 1047-1059, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28730281

ABSTRACT

In recent years, phosphodiesterase (PDE) inhibitors have been frequently tested for the treatment of experimental inflammatory and immune disorders. It is suggested that anti-inflammatory properties of PDE inhibitors are related to their ability to increase cAMP levels. The aim of this study was to verify the hypothesis that cAMP may be a useful marker of pharmacological response following administration of non-selective PDE inhibitors (pentoxifylline and (±)-lisofylline) to endotoxemic rats. Male Wistar rats were administered LPS (1 mg kg-1, i.v.) simultaneously with either compound given at two doses (40 and 80 mg kg-1, i.v.). Levels of cAMP and both compounds in animal plasma were measured by the validated HPLC methods. Pharmacokinetic-pharmacodynamic analysis was performed using basic and modified indirect response (IDR) models II in Phoenix WinNonlin. The results of this study indicate that, in contrast to pentoxifylline, (±)-lisofylline demonstrates a non-linear pharmacokinetics in rats with endotoxemia. In vitro study using human recombinant PDE4B and PDE7A revealed the occurrence of additive interaction between studied compounds. Moreover, (±)-lisofylline is a more potent inhibitor of PDEs compared to pentoxifylline, as evidenced by lower IC50 values. Following administration of both compounds, levels of cAMP in rat plasma increased in a dose-dependent manner. The modified IDR model II better described cAMP levels over time profiles. The validity of the proposed marker was confirmed by measuring plasma TNF-α levels in the studied animals. In conclusion, cAMP may be used in future preclinical and clinical studies of some PDE inhibitors to evaluate the drug concentration-effect relationship.


Subject(s)
Cyclic AMP/blood , Phosphodiesterase Inhibitors/pharmacokinetics , Animals , Biomarkers/blood , Cyclic AMP/agonists , Dose-Response Relationship, Drug , Male , Phosphodiesterase Inhibitors/pharmacology , Rats , Rats, Wistar
11.
J Org Chem ; 81(14): 6112-7, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27355860

ABSTRACT

Stereoselective direct aldol reaction between optically pure d- or l-glyceraldehyde and hydroxyacetylfuran is demonstrated as an efficient and straightforward methodology for the synthesis of six-carbon atom d- and l-arabino-hex-2-ulosonic acids. syn-Selective aldol reactions realized by using either tertiary amines or a dizinc aldol catalyst constitute two parallel routes to the de novo synthesis of orthogonally protected biologically relevant 2-keto-d- and l-gluconic acids.

12.
ChemistryOpen ; 4(6): 717-21, 2015 12.
Article in English | MEDLINE | ID: mdl-27308197

ABSTRACT

Herein we report a short and efficient protocol for the synthesis of naturally occurring higher-carbon sugars-sedoheptulose (d-altro-hept-2-ulose) and d-glycero-l-galacto-oct-2-ulose-from readily available sugar aldehydes and dihydroxyacetone (DHA). The key step includes a diastereoselective organocatalytic syn-selective aldol reaction of DHA with d-erythrose and d-xylose, respectively. The methodology presented can be expanded to the synthesis of various higher sugars by means of syn-selective carbon-carbon-bond-forming aldol reactions promoted by primary-based organocatalysts. For example, this methodology provided useful access to d-glycero-d-galacto-oct-2-ulose and 1-deoxy-d-glycero-d-galacto-oct-2-ulose from d-arabinose in high yield (85 and 74 %, respectively) and high stereoselectivity (99:1).

13.
Chem Soc Rev ; 43(2): 577-87, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24150484

ABSTRACT

Asymmetric reactions in water and in aqueous solutions have become an area of fast growing interest recently. Although for a long time neglected as a medium for organic reactions, water has attracted attention as the most widely distributed solvent in the world. Indeed, water is the solvent used by nature for biological chemistry including aldol reactions being essential for glycolysis, gluconeogenesis and related processes. Consequently, artificial catalysts designed and used for aldol reactions in water can be promising for the synthesis of enantiopure molecules and are also important for the understanding of complex chemistry of life. This tutorial review summarizes recent developments in the area of aqueous asymmetric aldol reactions highlighting two fundamental directions--development of water compatible chiral Lewis acids and amine-based organocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...