Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Biomedicines ; 10(6)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35740363

ABSTRACT

During an emergency, such as a pandemic in which time and resources are extremely scarce, it is important to find effective and rapid solutions when searching for possible treatments. One possibility in this regard is the repurposing of available "on the market" drugs. This is a proof of the concept study showing the potential of a collaboration between two research groups, engaged in computer-aided drug design and control of viral infections, for the development of early strategies to combat future pandemics. We describe a QSAR (quantitative structure activity relationship) based repurposing study on molecular topology and molecular docking for identifying inhibitors of the main protease (Mpro) of SARS-CoV-2, the causative agent of COVID-19. The aim of this computational strategy was to create an agile, rapid, and efficient way to enable the selection of molecules capable of inhibiting SARS-CoV-2 protease. Molecules selected through in silico method were tested in vitro using human coronavirus 229E as a surrogate for SARS-CoV-2. Three strategies were used to screen the antiviral activity of these molecules against human coronavirus 229E in cell cultures, e.g., pre-treatment, co-treatment, and post-treatment. We found >99% of virus inhibition during pre-treatment and co-treatment and 90−99% inhibition when the molecules were applied post-treatment (after infection with the virus). From all tested compounds, Molport-046-067-769 and Molport-046-568-802 are here reported for the first time as potential anti-SARS-CoV-2 compounds.

3.
Int J Pept Res Ther ; 27(4): 2257-2273, 2021.
Article in English | MEDLINE | ID: mdl-34276265

ABSTRACT

The design for vaccines using in silico analysis of genomic data of different viruses has taken many different paths, but lack of any precise computational approach has constrained them to alignment methods and some alignment-free techniques. In this work, a precise computational approach has been established wherein two new mathematical parameters have been suggested to identify the highly conserved and surface-exposed regions which are spread over a large region of the surface protein of the virus so that one can determine possible peptide vaccine candidates from those regions. The first parameter, w, is the sum of the normalized values of the measure of surface accessibility and the normalized measure of conservativeness, and the second parameter is the area of a triangle formed by a mathematical model named 2D Polygon Representation. This method has been, therefore, used to determine possible vaccine targets against SARS-CoV-2 by considering its surface-situated spike glycoprotein. The results of this model have been verified by a parallel analysis using the older approach of manually estimating the graphs describing the variation of conservativeness and surface-exposure across the protein sequence. Furthermore, the working of the method has been tested by applying it to find out peptide vaccine candidates for Zika and Hendra viruses respectively. A satisfactory consistency of the model results with pre-established results for both the test cases shows that this in silico alignment-free analysis proposed by the model is suitable not only to determine vaccine targets against SARS-CoV-2 but also ready to extend against other viruses.

5.
Curr Comput Aided Drug Des ; 17(7): 936-945, 2021.
Article in English | MEDLINE | ID: mdl-33530913

ABSTRACT

INTRODUCTION: Coronaviruses comprise a group of enveloped, positive-sense single-stranded RNA viruses that infect humans as well as a wide range of animals. The study was performed on a set of 573 sequences belonging to SARS, MERS and SARS-CoV-2 (CoVID-19) viruses. The sequences were represented with alignment-free sequence descriptors and analyzed with different chemometric methods: Euclidean/Mahalanobis distances, principal component analysis and self-organizing maps (Kohonen networks). We report the cluster structures of the data. The sequences are well-clustered regarding the type of virus; however, some of them show the tendency to belong to more than one virus type. BACKGROUND: This is a study of 573 genome sequences belonging to SARS, MERS and SARS-- CoV-2 (CoVID-19) coronaviruses. OBJECTIVES: The aim was to compare the virus sequences, which originate from different places around the world. METHODS: The study used alignment free sequence descriptors for the representation of sequences and chemometric methods for analyzing clusters. RESULTS: Majority of genome sequences are clustered with respect to the virus type, but some of them are outliers. CONCLUSION: We indicate 71 sequences, which tend to belong to more than one cluster.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cluster Analysis , Humans
6.
Curr Comput Aided Drug Des ; 17(2): 314-322, 2021.
Article in English | MEDLINE | ID: mdl-31878862

ABSTRACT

BACKGROUND: In this report, we consider a data set, which consists of 310 Zika virus genome sequences taken from different continents, Africa, Asia and South America. The sequences, which were compiled from GenBank, were derived from the host cells of different mammalian species (Simiiformes, Aedes opok, Aedes africanus, Aedes luteocephalus, Aedes dalzieli, Aedes aegypti, and Homo sapiens). METHODS: For chemometrical treatment, the sequences have been represented by sequence descriptors derived from their graphs or neighborhood matrices. The set was analyzed with three chemometrical methods: Mahalanobis distances, principal component analysis (PCA) and self organizing maps (SOM). A good separation of samples with respect to the region of origin was observed using these three methods. RESULTS: Study of 310 Zika virus genome sequences from different continents. To characterize and compare Zika virus sequences from around the world using alignment-free sequence comparison and chemometrical methods. CONCLUSION: Mahalanobis distance analysis, self organizing maps, principal components were used to carry out the chemometrical analyses of the Zika sequence data. Genome sequences are clustered with respect to the region of origin (continent, country). Africa samples are well separated from Asian and South American ones.


Subject(s)
Computer Simulation , Databases, Genetic , Sequence Analysis, RNA/methods , Zika Virus Infection/epidemiology , Zika Virus Infection/genetics , Zika Virus/genetics , Africa/epidemiology , Animals , Asia/epidemiology , Cluster Analysis , Humans , South America/epidemiology
8.
Methods Mol Biol ; 2131: 17-30, 2020.
Article in English | MEDLINE | ID: mdl-32162248

ABSTRACT

With the increasing frequency of viral epidemics, vaccines to augment the human immune response system have been the medium of choice to combat viral infections. The tragic consequences of the Zika virus pandemic in South and Central America a few years ago brought the issues into sharper focus. While traditional vaccine development is time-consuming and expensive, recent advances in information technology, immunoinformatics, genetics, bioinformatics, and related sciences have opened the doors to new paradigms in vaccine design and applications.Peptide vaccines are one group of the new approaches to vaccine formulation. In this chapter, we discuss the various issues involved in the design of peptide vaccines and their advantages and shortcomings, with special reference to the Zika virus for which no drugs or vaccines are as yet available. In the process, we outline our work in this field giving a detailed step-by-step description of the protocol we follow for such vaccine design so that interested researchers can easily follow them and do their own designing. Several flowcharts and figures are included to provide a background of the software to be used and results to be anticipated.


Subject(s)
Computational Biology/methods , Vaccines, Subunit/genetics , Viral Proteins/chemistry , Zika Virus/immunology , Humans , Mutation , Vaccines, Subunit/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Zika Virus/genetics
10.
Curr Med Chem ; 27(1): 32-41, 2020.
Article in English | MEDLINE | ID: mdl-30378480

ABSTRACT

BACKGROUND: In view of many current mosquito-borne diseases there is a need for the design of novel repellents. OBJECTIVE: The objective of this article is to review the results of the researches carried out by the authors in the computer-assisted design of novel mosquito repellents. METHODS: Two methods in the computational design of repellents have been discussed: a) Quantitative Structure Activity Relationship (QSAR) studies from a set of repellents structurally related to DEET using computed mathematical descriptors, and b) Pharmacophore based modeling for design and discovery of novel repellent compounds including virtual screening of compound databases and synthesis of novel analogues. RESULTS: Effective QSARs could be developed using mathematical structural descriptors. The pharmacophore based method is an effective tool for the discovery of new repellent molecules. CONCLUSION: Results reviewed in this article show that both QSAR and pharmacophore based methods can be used to design novel repellent molecules.


Subject(s)
Insect Repellents/chemistry , Computer-Aided Design , Quantitative Structure-Activity Relationship
12.
Pharmaceuticals (Basel) ; 12(4)2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31623241

ABSTRACT

Human life has been at the edge of catastrophe for millennia due diseases which emerge and reemerge at random. The recent outbreak of the Zika virus (ZIKV) is one such menace that shook the global public health community abruptly. Modern technologies, including computational tools as well as experimental approaches, need to be harnessed fast and effectively in a coordinated manner in order to properly address such challenges. In this paper, based on our earlier research, we have proposed a four-pronged approach to tackle the emerging pathogens like ZIKV: (a) Epidemiological modelling of spread mechanisms of ZIKV; (b) assessment of the public health risk of newly emerging strains of the pathogens by comparing them with existing strains/pathogens using fast computational sequence comparison methods; (c) implementation of vaccine design methods in order to produce a set of probable peptide vaccine candidates for quick synthesis/production and testing in the laboratory; and (d) designing of novel therapeutic molecules and their laboratory testing as well as validation of new drugs or repurposing of drugs for use against ZIKV. For each of these stages, we provide an extensive review of the technical challenges and current state-of-the-art. Further, we outline the future areas of research and discuss how they can work together to proactively combat ZIKV or future emerging pathogens.

13.
Curr Comput Aided Drug Des ; 15(5): 367-368, 2019.
Article in English | MEDLINE | ID: mdl-31628784
14.
Mol Inform ; 38(8-9): e1800164, 2019 08.
Article in English | MEDLINE | ID: mdl-31322827

ABSTRACT

In this paper we used two sets of calculated molecular descriptors to predict blood-brain barrier (BBB) entry of a collection of 415 chemicals. The set of 579 descriptors were calculated by Schrodinger and TopoCluj software. Polly and Triplet software were used to calculate the second set of 198 descriptors. Following this, modelling and a two-deep, repeated external validation method was used for QSAR formulation. Results show that both sets of descriptors individually and their combination give models of reasonable prediction accuracy. We also uncover the effectiveness of a variable selection approach, by showing that for one of our descriptor sets, the top 5 % predictors in terms of random forest variable importance are able to provide a better performing model than the model with all predictors. The top influential descriptors indicate important aspects of molecular structural features that govern BBB entry of chemicals.


Subject(s)
Blood-Brain Barrier/metabolism , Machine Learning , Organic Chemicals/chemistry , Organic Chemicals/pharmacokinetics , Algorithms , Models, Molecular , Quantitative Structure-Activity Relationship , Software
15.
Curr Comput Aided Drug Des ; 15(1): 29-44, 2019.
Article in English | MEDLINE | ID: mdl-30062973

ABSTRACT

INTRODUCTION: Among the mosquito-borne human-infecting flavivirus species that include Zika, West Nile, yellow fever, Japanese encephalitis and Dengue viruses, the Zika virus is found to be closest to Dengue virus, sharing the same clade in the Flavivirus phylogenetic tree. We consider these five flaviviruses and on closer examination in our analyses, the nucleotide sequences of the Dengue viral genes (envelope and NS5) and genomes are seen to be quite widely different from the other four flaviviruses. We consider the extent of this distinction and determine the advantage and/or disadvantage such differences may confer upon the Dengue viral pathogenesis. METHODS: We have primarily used a 2D graphical representation technique to show the differences in base distributions in these five flaviviruses and subsequently, obtained quantitative estimates of the differences. Similarity/dissimilarity between the viruses based on the genes were also determined which showed that the differences with the Dengue genes are more pronounced. RESULTS: We found that the Dengue viruses compared to the other four flaviviruses spread rapidly worldwide and became endemic in various regions with small alterations in sequence composition relative to the host populations as revealed by codon usage biases and phylogenetic examination. CONCLUSION: We conclude that the Dengue genes are indeed more widely separated from the other aforementioned mosquito-borne human-infecting flaviviruses due to excess adenine component, a feature that is sparse in the literature. Such excesses have a bearing on drug and vaccine, especially peptide vaccine, development and should be considered appropriately.


Subject(s)
Adenine , Dengue Virus/genetics , Flavivirus/genetics , Base Sequence/genetics , Evolution, Molecular
18.
Curr Top Med Chem ; 18(26): 2202-2208, 2018.
Article in English | MEDLINE | ID: mdl-30417788

ABSTRACT

We briefly review the situations arising out of epidemics that erupt rather suddenly, threatening life and livelihoods of humans. Ebola, Zika and the Nipah virus outbreaks are recent examples where the viral epidemics have led to considerably high degree of fatalities or debilitating consequences. The problems are accentuated by a lack of drugs or vaccines effective against the new and emergent viruses, and the inordinate amount of temporal and financial resources that are required to combat the novel pathogens. Progress in computational, biological and informational sciences have made it possible to consider design of synthetic vaccines that can be rapidly developed and deployed to help stem the damages. In this review, we consider the pros and cons of this new paradigm and suggest a new system where the manufacturing process can be decentralized to provide more targeted vaccines to meet the urgent needs of protection in case of a rampaging epidemic.


Subject(s)
Hemorrhagic Fever, Ebola/epidemiology , Henipavirus Infections/epidemiology , Peptides/immunology , Viral Vaccines/immunology , Zika Virus Infection/epidemiology , Animals , Hemorrhagic Fever, Ebola/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Henipavirus Infections/immunology , Henipavirus Infections/prevention & control , Humans , Nipah Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...