Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 100: 259-268, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563839

ABSTRACT

In the present study, various lignocellulosic biowastes (wood sawdust, olive pomace, walnut shell, apricot seed, tea stalk, hazelnut husk) were hydrothermally carbonized at 220 °C for 90 min. Since the hydrochars have several end-uses, this study particularly investigates their end-use as solid fuels and precursors of activated carbon after chemical activation. Activated hydrochars were obtained from the hydrochars of wood sawdust, olive pomace, walnut shell, apricot seed, tea stalk, hazelnut husk by chemical activation with KOH at 600 °C. As fuels, all hydrochars had higher fixed carbon content, lower volatile matter content and higher ignition temperatures compared to their original biomass samples. Olive pomace hydrochar, which has high heating value (25.56 MJ/kg) and low ash content (5.5%), has the best fuel properties among hydrochars investigated. Activated hydrochars demonstrated BET surface areas of 308.9-666.7 m2/g (activated hydrochar of wood sawdust and tea stalk), and total pore volumes of 0.25-0.73 cm3/g (activated hydrochar of olive pomace and wood sawdust). The average pore size distribution of the activated hydrochars ranged between 1.05 nm (olive pomace)- 4.74 nm (wood sawdust). All agricultural-based activated hydrochars had similar average pore size distribution of 1.05-1.25 nm, which fell in the range of super-microporous structure. With the average pore size of 4.74 nm, activated hydrochar of wood sawdust could be classified under mesoporous structure. This study clearly points out that biomass type definitely affected fuel properties of hydrochars and the porous structure of the activated hydrochars.


Subject(s)
Charcoal , Wood , Biomass , Hot Temperature , Lignin
2.
Water Environ Res ; 79(13): 2551-6, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18198700

ABSTRACT

The interaction of tetracycline with struvite during adsorption and precipitation processes was investigated. Tetracycline removal by adsorption was affected by solution pH, contact time, and struvite concentration. The lowest tetracycline removal (8.4%) was observed at pH 7.7, the dissociation constant (pKa2) of tetracycline. Because of the electrostatic repulsion, the amount of tetracycline adsorbed on the surface was low. The small amount of adsorption was the result of surface complexation between tetracycline ions and metal ions. Calcium (Ca2+) ions in the adsorbent enhanced the binding of tetracycline. Freundlich (KF: 0.04, n: 1.49) and Redlich-Peterson (KR: 0.08, alphaR: 0.98, betaR: 0.49) models best defined the equilibrium data. In the case of struvite precipitation, approximately 22% of tetracycline was removed as a result of binding to struvite alongside struvite formation.


Subject(s)
Magnesium Compounds/chemistry , Phosphates/chemistry , Tetracycline/chemistry , Waste Disposal, Fluid/methods , Adsorption , Chemical Precipitation , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Struvite
3.
J Hazard Mater ; 126(1-3): 23-30, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16046060

ABSTRACT

Although hazardous waste lists and their classification methodologies are nearly the same in most of the countries, there are some gaps and subjectiveness in determining the waste as hazardous waste. A rating system for the determination of waste as a hazardous waste is presented in this study which aims to overcome the problems resulted from the existing methodologies. Overall rating value (ORV) calculates and quantifies the waste as regular, non-regular or hazardous waste in an "hourglass" scale. "ORV" as a cumulative-linear formulation in proposed model consists of components such as ecological effects of the waste (Ee) in terms of four main hazard criteria: ignitability, reactivity, corrosivity and toxicity; combined potential risk (CPR) including carcinogenic effect, toxic, infectious and persistence characteristics; existing lists and their methodology (L) and decision factor (D) to separate regular and non-regular waste. Physical form (f) and quantity (Q) of the waste are considered as factors of these components. Seventeen waste samples from different sources are evaluated to demonstrate the simulation of the proposed model by using "hourglass" scale. The major benefit of the presented rating system is to ease the works of decision makers in managing the wastes.


Subject(s)
Hazardous Waste/classification , Models, Theoretical , Terminology as Topic , Weights and Measures
SELECTION OF CITATIONS
SEARCH DETAIL
...