Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(2): 1369-1377, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27976765

ABSTRACT

We have studied in this work the effect of increasing structural disorder on the persistent luminescence of a Cr3+ doped zinc gallate spinel. This disorder was introduced by progressive substitution of Zn2+ by Mg2+ ions, and was studied by photoluminescence, X-ray diffraction, extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES) and electron paramagnetic resonance (EPR) spectroscopy. It was found that increasing the Mg/Zn substitution decreases the number of Cr3+ in undistorted sites and increases the number of Cr3+ with neighbouring antisite defects and with neighbouring Cr3+ ions (referred to as Cr clusters), which in turn decreases the intensity of persistent luminescence. Both XANES and EPR spectra could be simulated by a linear combination of Cr3+ spectra with three types of Cr3+ environments. The increasing disorder was found to be correlated with a decrease of the average Cr-O bond length and a decrease of crystal field strength experienced by Cr3+ ions.

2.
Phys Chem Chem Phys ; 17(16): 10993-9, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25825209

ABSTRACT

The X-ray absorption near edge structure (XANES) spectroscopy technique is used to better understand the charging and decharging processes of the persistent luminescence in the Cr(3+)doped AB2O4 spinels (A = Zn, Mg and B = Ga and Al) with low photon energy excitation by visible light. Cr K edge XANES spectra have been simulated for different near neighbour environments around the Cr(3+) recombination centres and compared with the experimental curve. In the Cr(3+):ZnGa2O4 compound, the Cr(3+) local structure corresponds mostly to that of a normal spinel (∼70%), while the rest comprises of a distorted octahedral environment arising from cationic site inversion and a contribution from chromium clustering. This local structure is considerably different in Cr(3+):MgGa2O4 and Cr(3+):ZnAl2O4, where, for both cases, chromium clustering represents the main contribution. The strong correlation between the intensity of persistent luminescence and the percentage of Cr in clusters leads us to infer that the presence of Cr clusters is responsible for the decrease of the intensity of the visible light induced persistent luminescence in the Cr(3+) doped AB2O4 spinels.


Subject(s)
Aluminum Oxide/chemistry , Chromium/chemistry , Luminescent Agents/chemistry , Magnesium Oxide/chemistry , Models, Molecular , Molecular Conformation
3.
Phys Chem Chem Phys ; 17(3): 1790-9, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25462833

ABSTRACT

Cr(3+) doped spinel compounds AB2O4 with A = Zn, Mg and B = Ga, Al exhibit a long, near infrared persistent luminescence when excited with UV or X-rays. In addition, the persistent luminescence of ZnGa2O4, and to a lesser extent MgGa2O4, can also be induced by visible light excitation via (4)A2→(4)T2 transition of Cr(3+), which makes these compounds suitable as biomarkers for in vivo optical imaging of small animals. We correlate this peculiar optical property with the presence of antisite defects, which are present in ZnGa2O4 and MgGa2O4. By using X-ray absorption fine structure (XAFS) spectroscopy, associated with electron paramagnetic resonance (EPR) and optical emission spectroscopy, it is shown that an increase in antisite defects concentration results in a decrease in the Cr-O bond length and the octahedral crystal field energy. A part of the defects occurs in the close environment of Cr(3+) ions, as shown by the increasing strain broadening of EPR and XAFS peaks observed upon increasing antisite disorder. It appears that ZnAl2O4, which exhibits the largest crystal field splitting of Cr(3+) and the smallest antisite disorder, does not show considerable persistent luminescence upon visible light excitation as compared to ZnGa2O4 and MgGa2O4. These results highlight the importance of Cr(3+) ions with neighboring antisite defects in the mechanism of persistent luminescence exhibited by Cr(3+) doped AB2O4 spinel compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...