Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Aging Cell ; 20(9): e13455, 2021 09.
Article in English | MEDLINE | ID: mdl-34409748

ABSTRACT

Intracellular amyloid beta oligomer (iAßo) accumulation and neuronal hyperexcitability are two crucial events at early stages of Alzheimer's disease (AD). However, to date, no mechanism linking iAßo with an increase in neuronal excitability has been reported. Here, the effects of human AD brain-derived (h-iAßo) and synthetic (iAßo) peptides on synaptic currents and action potential firing were investigated in hippocampal neurons. Starting from 500 pM, iAßo rapidly increased the frequency of synaptic currents and higher concentrations potentiated the AMPA receptor-mediated current. Both effects were PKC-dependent. Parallel recordings of synaptic currents and nitric oxide (NO)-associated fluorescence showed that the increased frequency, related to pre-synaptic release, was dependent on a NO-mediated retrograde signaling. Moreover, increased synchronization in NO production was also observed in neurons neighboring those dialyzed with iAßo, indicating that iAßo can increase network excitability at a distance. Current-clamp recordings suggested that iAßo increased neuronal excitability via AMPA-driven synaptic activity without altering membrane intrinsic properties. These results strongly indicate that iAßo causes functional spreading of hyperexcitability through a synaptic-driven mechanism and offers an important neuropathological significance to intracellular species in the initial stages of AD, which include brain hyperexcitability and seizures.


Subject(s)
Amyloid beta-Peptides/metabolism , Synapses/metabolism , Animals , Female , Humans , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Rats, Wistar
2.
ACS Chem Neurosci ; 11(19): 3064-3076, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32886489

ABSTRACT

Oligomeric ß-amyloid peptide (Aß) is one of the main neurotoxic agents of Alzheimer's disease (AD). Oligomers associate to neuronal membranes, forming "pore-like" structures that cause intracellular calcium and neurotransmitter dyshomeostasis, leading to synaptic failure and death. Through molecular screening targeting the C terminal region of Aß, a region involved in the toxic properties of the peptide, we detected an FDA approved compound, gabapentin (GBP), with neuroprotective effects against Aß toxicity. At micromolar concentrations, GBP antagonized peptide aggregation over time and reduced the Aß absorbance plateau to 28% of control. In addition, GBP decreased Aß association to membranes by almost half, and the effects of Aß on intracellular calcium in hippocampal neurons were antagonized without causing effects on its own. Finally, we found that GBP was able to block the synaptotoxicity induced by Aß in hippocampal neurons, increasing post-synaptic currents from 1.7 ± 0.9 to 4.2 ± 0.7 fC and mean relative fluorescence intensity values of SV2, a synaptic protein, from 0.7 ± 0.09 to 1.00 ± 0.08. The results show that GBP can interfere with Aß-induced toxicity by blocking multiple steps, resulting in neuroprotection, which justifies advancing toward additional animal and human studies.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , Gabapentin/pharmacology , Hippocampus/metabolism , Humans , Neurons/metabolism , Peptide Fragments
3.
Neurobiol Dis ; 141: 104938, 2020 07.
Article in English | MEDLINE | ID: mdl-32434047

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in elderly people. Existent therapies are directed at alleviating some symptoms, but are not effective in altering the course of the disease. METHODS: Based on our previous study that showed that an Aß-interacting small peptide protected against the toxic effects of amyloid-beta peptide (Aß), we carried out an array of in silico, in vitro, and in vivo assays to identify a molecule having neuroprotective properties. RESULTS: In silico studies showed that the molecule, referred to as M30 (2-Octahydroisoquinolin-2(1H)-ylethanamine), was able to interact with the Aß peptide. Additionally, in vitro assays showed that M30 blocked Aß aggregation, association to the plasma membrane, synaptotoxicity, intracellular calcium, and cellular toxicity, while in vivo experiments demonstrated that M30 induced a neuroprotective effect by decreasing the toxicity of Aß in the dentate gyrus of the hippocampus and improving the alteration in spatial memory in behavior assays. DISCUSSION: Therefore, we propose that this new small molecule could be a useful candidate for the additional development of a treatment against AD since it appears to block multiple steps in the amyloid cascade. Overall, since there are no drugs that effectively block the progression of AD, this approach represents an innovative strategy. SIGNIFICANCE: Currently, there is no effective treatment for AD and the expectations to develop an effective therapy are low. Using in silico, in vitro, and in vivo experiments, we identified a new compound that is able to inhibit Aß-induced neurotoxicity, specifically aggregation, association to neurons, synaptic toxicity, calcium dyshomeostasis and memory impairment induced by Aß. Because Aß toxicity is central to AD progression, the inhibition mediated by this new molecule might be useful as a therapeutic tool.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/administration & dosage , Protein Aggregation, Pathological/prevention & control , Animals , Computer Simulation , Hippocampus/drug effects , Hippocampus/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Molecular Docking Simulation , Neurons/drug effects , Neurons/metabolism , PC12 Cells , Protein Aggregation, Pathological/metabolism , Rats
4.
Front Aging Neurosci ; 10: 226, 2018.
Article in English | MEDLINE | ID: mdl-30123122

ABSTRACT

Background: The beta-amyloid peptide (Aß) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aß in cultured hippocampal neurons. Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-ß-cyclodextrin (MßCD) and MßCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively. Results: The results showed that cholesterol removal decreased the macroscopic association of Aß to neuronal membranes (fluorescent-puncta/20 µm: control = 18 ± 2 vs. MßCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aß with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MßCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aß (fluorescent-puncta/20 µm: control = 18 ± 2 vs. MßCD = 10 ± 1, p < 0.01), but inhibited membrane disruption. Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aß in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aß peptide in the neuronal membrane.

5.
J Alzheimers Dis ; 51(3): 689-99, 2016.
Article in English | MEDLINE | ID: mdl-26890761

ABSTRACT

A major characteristic of Alzheimer's disease (AD) is the presence of amyloid-ß peptide (Aß) oligomers and aggregates in the brain. It is known that Aß oligomers interact with the neuronal membrane and induce perforations that cause an influx of calcium ions and enhance the release of synaptic vesicles leading to a delayed synaptic failure by vesicle depletion. To better understand the mechanism by which Aß exerts its effect on the plasma membrane, we evaluated three Aß fragments derived from different regions of Aß(1-42); Aß(1-28) from the N-terminal region, Aß(25-35) from the central region, and Aß(17-42) from the C-terminal region. The neuronal activities of these fragments were examined with patch clamp, immunofluorescence, transmission electron microscopy, aggregation assays, calcium imaging, and MTT reduction assays. The present results indicate that the fragment Aß(1-28) contributes to aggregation, an increase in intracellular calcium and synaptotoxicity, but is not involved in membrane perforation; Aß(25-35) is important for membrane perforation, calcium increase, and synaptotoxicity; and Aß(17-42) induced mitochondrial toxicity similar to the full length Aß(1-42), but was unable to induce membrane perforation and calcium increase, supporting the idea that it is less toxic in the non-amyloidogenic pathway.


Subject(s)
Amyloid beta-Peptides/toxicity , Cell Membrane/metabolism , Peptide Fragments/toxicity , Animals , Calcium/metabolism , Cells, Cultured , Fluorescent Antibody Technique , HEK293 Cells , Hippocampus/physiopathology , Humans , Microscopy, Electron, Transmission , Neurons/physiology , Patch-Clamp Techniques , Porosity , Rats, Sprague-Dawley , Voltage-Sensitive Dye Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...