Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 17(19): 4918-21, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26378799

ABSTRACT

The development of practical methods to access chiral nonracemic α-substituted ketones is of particular importance due to their ubiquitous nature. Unprecedented levels of enantioselectivity are reported for the synthesis of α-tosyloxy ketones, using enol esters and chiral iodine(III) reagents. The reaction can be performed under both stoichiometric and catalytic conditions. These results suggest widely different reaction mechanisms for the reaction of ketones versus enol esters, supporting recent computational insights.

2.
J Org Chem ; 80(13): 6897-902, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26098233

ABSTRACT

The reactivity of enol esters toward [hydroxy(tosyloxy)iodo]benzene (HTIB) was assessed. These substrates were found to be rapidly converted in high yields to their corresponding α-tosyloxy ketones. This transformation demonstrates that these substrates can act as ketone surrogates. The scope of the method was investigated and aromatic, aliphatic, and cyclic enol esters were found to be suitable substrates for the reaction. The relative reactivity of a model substrate toward HTIB and m-CPBA was investigated, and it was found that the reaction could be performed under catalytic conditions.

3.
J Org Chem ; 77(24): 11283-95, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23234479

ABSTRACT

A family of iodooxazoline catalysts was developed to promote the iodine(III)-mediated α-tosyloxylation of ketone derivatives. The α-tosyloxy ketones produced are polyvalent chiral synthons. Through this study, we have unearthed a unique mode of stereoinduction from the chiral oxazoline moiety, where the stereogenic center alpha to the oxazoline oxygen atom is significant. Computational chemistry was used to rationalize the stereoinduction process. The catalysts presented promote currently among the best levels of activity and selectivity for this transformation. Evaluation of the scope of the reaction is presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...