Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Int J Mol Sci ; 25(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38791330

ABSTRACT

Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.


Subject(s)
Core Binding Factor Alpha 1 Subunit , Mechanotransduction, Cellular , TRPP Cation Channels , Humans , Core Binding Factor Alpha 1 Subunit/metabolism , TRPP Cation Channels/metabolism , TRPP Cation Channels/genetics , Animals , Bone and Bones/metabolism , Bone Remodeling , Bone Regeneration , Osteocytes/metabolism
3.
Biomedicines ; 12(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38255243

ABSTRACT

Evidence from animal models and human genetics implicates Toll-like Receptors (TLRs) in the pathogenesis of Systemic Lupus Erythematosus (SLE) and Rheumatoid Arthritis (RA). Endosomal TLRs sensing nucleic acids were proposed to induce lupus-promoting signaling in dendritic cells, B cells, monocytes, and macrophages. Ligation of TLR4 in synovial macrophages and fibroblast-like synoviocytes (FLSs) by endogenous ligands was suggested to induce local production of mediators that amplify RA synovitis. Inhibition of TLRs using antagonists or monoclonal antibodies (mAbs) that selectively prevent extracellular or endosomal TLR ligation has emerged as an attractive treatment strategy for SLE and RA. Despite the consistent success of selective inhibition of TLR ligation in animal models, DV-1179 (dual TLR7/9 antagonist) failed to achieve pharmacodynamic effectiveness in SLE, and NI-0101 (mAb against TLR4) failed to improve arthritis in RA. Synergistic cooperation between TLRs and functional redundancy in human diseases may require pharmacologic targeting of intracellular molecules that integrate signaling downstream of multiple TLRs. Small molecules inhibiting shared kinases involved in TLR signaling and peptidomimetics disrupting the assembly of common signalosomes ("Myddosome") are under development. Targeted degraders (proteolysis-targeting chimeras (PROTACs)) of intracellular molecules involved in TLR signaling are a new class of TLR inhibitors with promising preliminary data awaiting further clinical validation.

5.
Cancers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38001700

ABSTRACT

Since the initial observation that patients with rheumatoid arthritis (RA) have an excess risk of developing hematologic malignancies [...].

6.
Cells ; 12(20)2023 10 11.
Article in English | MEDLINE | ID: mdl-37887281

ABSTRACT

Salivary gland tumors (SGTs) are rare and complex neoplasms characterized by heterogenous histology and clinical behavior as well as resistance to systemic therapy. Tumor etiology is currently under elucidation and an interplay of genetic and epigenetic changes has been proposed to contribute to tumor development. In this work, we investigated epigenetic regulators and histone-modifying factors that may alter gene expression and participate in the pathogenesis of SGT neoplasms. We performed a detailed bioinformatic analysis on a publicly available RNA-seq dataset of 94 ACC tissues supplemented with clinical data and respective controls and generated a protein-protein interaction (PPI) network of chromatin and histone modification factors. A significant upregulation of TP53 and histone-modifying enzymes SUV39H1, EZH2, PRMT1, HDAC8, and KDM5B, along with the upregulation of DNA methyltransferase DNMT3A and ubiquitin ligase UHRF1 mRNA levels, as well as a downregulation of lysine acetyltransferase KAT2B levels, were detected in ACC tissues. The protein expression of p53, SUV39H1, EZH2, and HDAC8 was further validated in SGT tissues along with their functional deposition of the repressive histone marks H3K9me3 and H3K27me3, respectively. Overall, this study is the first to detect a network of interacting proteins affecting chromatin structure and histone modifications in salivary gland tumor cells, further providing mechanistic insights in the molecular profile of SGTs that confer to altered gene expression programs.


Subject(s)
Histones , Salivary Gland Neoplasms , Humans , Histones/metabolism , Chromatin , Methyltransferases/metabolism , Epigenesis, Genetic , Salivary Gland Neoplasms/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Histone Deacetylases/metabolism
7.
Eur J Cancer ; 190: 112938, 2023 09.
Article in English | MEDLINE | ID: mdl-37390803

ABSTRACT

Tumour cell biomechanics has lately came to the fore as a disparate feature that fosters cancer development and progression. Tumour mechanosensing entails a mechanical interplay amongst tumour cells, extracellular matrix (ECM) and cells of the tumour microenvironment (TME). Sensory receptors (mechanoceptors) detect changes of extracellular mechanical inputs such as various types of mechanical forces/stress and trigger oncogenic signalling pathways advocating for cancer initiation, growth, survival, angiogenesis, invasion, metastasis, and immune evasion. Moreover, alterations in ECM stiffness and potentiation of mechanostimulated transcriptional regulatory molecules (transcription factors/cofactors) have been shown to strongly correlate with resistance to anticancer drugs. On this basis, new mechanosensitive proteins emerge as potential therapeutic targets and/or biomarkers in cancer. Accordingly, tumour mechanobiology arises as a promising field that can potentially provide novel combinatorial regimens to reverse drug resistance, as well as offer unprecedented targeting approaches that may help to more effectively treat a large proportion of solid tumours and their complications. Here, we highlight recent findings regarding various aspects of tumour mechanobiology in the clinical setting and discuss evidence-based perspectives of developing diagnostic/prognostic tools and therapeutic approaches that exploit tumour-TME physical associations.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/pathology , Antineoplastic Agents/therapeutic use , Extracellular Matrix/metabolism , Signal Transduction , Tumor Microenvironment
8.
J Cell Mol Med ; 26(8): 2428-2437, 2022 04.
Article in English | MEDLINE | ID: mdl-35285136

ABSTRACT

Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens' life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin-1 (PC1) and polycystin-2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non-syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti-PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)-AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non-syndromic craniosynostosis.


Subject(s)
Craniosynostoses , Proto-Oncogene Proteins c-akt , Cell Proliferation , Child , Craniosynostoses/genetics , Craniosynostoses/metabolism , Humans , Mechanistic Target of Rapamycin Complex 2/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
9.
J Cell Mol Med ; 26(5): 1699-1709, 2022 03.
Article in English | MEDLINE | ID: mdl-35106909

ABSTRACT

The mechanobiological aspects of glioblastoma (GBM) pathogenesis are largely unknown. Polycystin-1 (PC1) is a key mechanosensitive protein which perceives extracellular mechanical cues and transforms them into intracellular biochemical signals that elicit a change in cell behaviour. The aim of the present study was to investigate if and how PC1 participates in GBM pathogenesis under a mechanically induced microenvironment. Therefore, we subjected T98G GBM cells to continuous hydrostatic pressure (HP) and/or PC1 blockade and evaluated their effect on cell behaviour, the activity of signalling pathways and the expression of mechano-induced transcriptional regulators and markers associated with properties of cancer cells. According to our data, PC1 and HP affect GBM cell proliferation, clonogenicity and migration; the diameter of GBM spheroids; the phosphorylation of mechanistic target of rapamycin (mTOR), extracellular signal-regulated kinase (ERK) and focal adhesion kinase (FAK); the protein expression of transcription cofactors YES-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ); and the mRNA expression of markers related to anti-apoptosis, apoptosis, angiogenesis, epithelial to mesenchymal transition (EMT) and proliferation. Together, our in vitro results suggest that PC1 plays an important role in GBM mechanobiology.


Subject(s)
Glioblastoma , Cell Line, Tumor , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Glioblastoma/pathology , Humans , Hydrostatic Pressure , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Microenvironment
10.
Int J Mol Sci ; 23(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35163745

ABSTRACT

Mechanistic target of rapamycin (mTOR) is a central signaling hub that integrates networks of nutrient availability, cellular metabolism, and autophagy in eukaryotic cells. mTOR kinase, along with its upstream regulators and downstream substrates, is upregulated in most human malignancies. At the same time, mechanical forces from the tumor microenvironment and mechanotransduction promote cancer cells' proliferation, motility, and invasion. mTOR signaling pathway has been recently found on the crossroads of mechanoresponsive-induced signaling cascades to regulate cell growth, invasion, and metastasis in cancer cells. In this review, we examine the emerging association of mTOR signaling components with certain protein tools of tumor mechanobiology. Thereby, we highlight novel mechanisms of mechanotransduction, which regulate tumor progression and invasion, as well as mechanisms related to the therapeutic efficacy of antitumor drugs.


Subject(s)
Mechanotransduction, Cellular , Neoplasms , Signal Transduction , TOR Serine-Threonine Kinases , Cell Proliferation , Humans , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment
11.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803458

ABSTRACT

Tumor aggressiveness and progression is highly dependent on the process of metastasis, regulated by the coordinated interplay of genetic and epigenetic mechanisms. Metastasis involves several steps of epithelial to mesenchymal transition (EMT), anoikis resistance, intra- and extravasation, and new tissue colonization. EMT is considered as the most critical process allowing cancer cells to switch their epithelial characteristics and acquire mesenchymal properties. Emerging evidence demonstrates that epigenetics mechanisms, DNA methylation, histone modifications, and non-coding RNAs participate in the widespread changes of gene expression that characterize the metastatic phenotype. At the chromatin level, active and repressive histone post-translational modifications (PTM) in association with pleiotropic transcription factors regulate pivotal genes involved in the initiation of the EMT process as well as in intravasation and anoikis resistance, playing a central role in the progression of tumors. Herein, we discuss the main epigenetic mechanisms associated with the different steps of metastatic process, focusing in particular on the prominent role of histone modifications and the modifying enzymes that mediate transcriptional regulation of genes associated with tumor progression. We further discuss the development of novel treatment strategies targeting the reversibility of histone modifications and highlight their importance in the future of cancer therapy.


Subject(s)
Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Histones/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Protein Processing, Post-Translational , Animals , Humans , Neoplasm Metastasis , Neoplasms/pathology
12.
J Cell Mol Med ; 25(7): 3216-3225, 2021 04.
Article in English | MEDLINE | ID: mdl-33656806

ABSTRACT

Craniosynostosis refers to the premature fusion of one or more cranial sutures leading to skull shape deformities and brain growth restriction. Among the many factors that contribute to abnormal suture fusion, mechanical forces seem to play a major role. Nevertheless, the underlying mechanobiology-related mechanisms of craniosynostosis still remain unknown. Understanding how aberrant mechanosensation and mechanotransduction drive premature suture fusion will offer important insights into the pathophysiology of craniosynostosis and result in the development of new therapies, which can be used to intervene at an early stage and prevent premature suture fusion. Herein, we provide evidence for the first time on the role of polycystin-1 (PC1), a key protein in cellular mechanosensitivity, in craniosynostosis, using primary cranial suture cells isolated from patients with trigonocephaly and dolichocephaly, two common types of craniosynostosis. Initially, we showed that PC1 is expressed at the mRNA and protein level in both trigonocephaly and dolichocephaly cranial suture cells. Followingly, by utilizing an antibody against the mechanosensing extracellular N-terminal domain of PC1, we demonstrated that PC1 regulates runt-related transcription factor 2 (RUNX2) activation and osteocalcin gene expression via extracellular signal-regulated kinase (ERK) signalling in our human craniosynostosis cell model. Altogether, our study reveals a novel mechanotransduction signalling axis, PC1-ERK-RUNX2, which affects osteoblastic differentiation in cranial suture cells from trigonocephaly and dolichocephaly patients.


Subject(s)
Craniosynostoses/metabolism , TRPP Cation Channels/metabolism , Cells, Cultured , Child , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Fibroblasts/metabolism , Humans , MAP Kinase Signaling System , Male , Mechanotransduction, Cellular , Osteoblasts/metabolism , Osteocalcin/genetics , Osteocalcin/metabolism , TRPP Cation Channels/genetics
13.
Metabolism ; 110: 154264, 2020 09.
Article in English | MEDLINE | ID: mdl-32445641

ABSTRACT

BACKGROUND: Bisphosphonates (BPs) are pyrophosphate analogues widely used in diseases related to bone loss and increased bone turnover. Their high affinity for bone hydroxyapatite makes them ideal agents for bone diseases, while preventing them from reaching other cells and tissues. Data of the last decade, however, have demonstrated extra-skeletal tissue deposition and a variety of non-skeletal effects have been recently recognized. As such, BPs have been shown to exert anti-tumor, immunomodulatory, anti-inflammatory and anti-diabetic effects. In addition, new delivery systems (liposomes, nanoparticles, hydrogels) are being developed in an effort to expand BPs clinical application to extra-skeletal tissues and enhance their overall therapeutic spectrum and effectiveness. In the present review, we outline current data on extra-skeletal actions of bisphosphonates and attempt to unravel the underlying pathophysiological mechanisms.


Subject(s)
Diphosphonates/pharmacology , Animals , Cardiovascular System/drug effects , Clinical Trials as Topic , Diabetes Mellitus, Type 2/drug therapy , Diphosphonates/adverse effects , Eye/drug effects , Humans , Immune System/drug effects
14.
Clin Oral Investig ; 24(6): 1987-1995, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31444694

ABSTRACT

OBJECTIVES: Periodontitis is a highly prevalent chronic inflammatory disease caused by periodontopathogens, such as Filifactor alocis. This study sought to examine the matrix metalloproteinase (MMP)-1 synthesis by monocytic and fibroblastic cells in response to F. alocis and to unravel the underlying cellular mechanisms. MATERIAL AND METHODS: Gingival biopsies from periodontally healthy and periodontitis individuals were analyzed for the presence of F. alocis and MMP-1 by RT-PCR. Human gingival fibroblastic (HGF-1) and monocytic (THP-1) cells were stimulated with F. alocis in the presence and absence of a blocking toll-like receptor (TLR)2 antibody or specific inhibitors against MAPKs. MMP-1 expression and protein levels were studied by RT-PCR and ELISA, respectively. RESULTS: F. alocis was highly prevalent in biopsies from periodontitis patients but barely present in the healthy gingiva. Significantly higher MMP-1 expression levels were found in the inflamed gingiva as compared with healthy biopsies. F. alocis caused a significant and dose-dependent MMP-1 upregulation in both cells. The stimulatory effect of F. alocis on MMP-1 was TLR2- and MAPK-dependent and more pronounced on THP-1 cells as compared with HGF-1 cells. CONCLUSIONS: Our results demonstrate that F. alocis and MMP-1 are more prevalent at periodontitis sites. Additionally, our study provides original evidence that F. alocis can stimulate MMP-1 production by fibroblastic and monocytic cells, suggesting that F. alocis may contribute to periodontal breakdown through MMP-1. CLINICAL RELEVANCE: F. alocis and MMP-1 are linked to each other and key players in periodontitis, which may have significant implications for future diagnostic and treatment strategies.


Subject(s)
Clostridiales , Matrix Metalloproteinase 1 , Periodontitis , Clostridiales/physiology , Fibroblasts , Gingiva/metabolism , Humans , Matrix Metalloproteinase 1/metabolism , Periodontitis/metabolism , Periodontitis/microbiology
15.
Int J Mol Sci ; 20(9)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052533

ABSTRACT

Alterations in the process of mechanotransduction have been implicated in the pathogenesis of several diseases such as genetic diseases, osteoporosis, cardiovascular anomalies, and cancer. Several studies over the past twenty years have demonstrated that polycystins (polycystin-1, PC1; and polycystin-2, PC2) respond to changes of extracellular mechanical cues, and mediate pathogenic mechanotransduction and cyst formation in kidney cells. However, recent reports reveal the emergence of polycystins as key proteins that facilitate the transduction of mechano-induced signals in various clinical entities besides polycystic kidney disease, such as cancer, cardiovascular defects, bone loss, and deformations, as well as inflammatory processes like psoriasis. Herewith, we discuss data from recent studies that establish this role with potential clinical utility.


Subject(s)
Bone Resorption/pathology , Cardiomyopathies/pathology , Neoplasms/pathology , Psoriasis/pathology , TRPP Cation Channels/metabolism , Animals , Bone Resorption/metabolism , Cardiomyopathies/metabolism , Humans , Mechanotransduction, Cellular , Neoplasms/metabolism , Psoriasis/metabolism , TRPP Cation Channels/analysis
16.
Int J Mol Sci ; 20(4)2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30795533

ABSTRACT

BACKGROUND: Skin cancer represents the most common human malignancy, and it includes BCC, SCC, and melanoma. Since melanoma is one of the most aggressive types of cancer, we have herein attempted to develop a gene-specific intron retention signature that can distinguish BCC and SCC from melanoma biopsy tumors. METHODS: Intron retention events were examined through RT-sqPCR protocols, using total RNA preparations derived from BCC, SCC, and melanoma Greek biopsy specimens. Intron-hosted miRNA species and their target transcripts were predicted via the miRbase and miRDB bioinformatics platforms, respectively. Ιntronic ORFs were recognized through the ORF Finder application. Generation and visualization of protein interactomes were achieved by the IntAct and Cytoscape softwares, while tertiary protein structures were produced by using the I-TASSER online server. RESULTS: c-MYC and Sestrin-1 genes proved to undergo intron retention specifically in melanoma. Interaction maps of proteins encoded by genes being potentially targeted by retained intron-accommodated miRNAs were generated and SRPX2 was additionally delivered to our melanoma-specific signature. Novel ORFs were identified in MCT4 and Sestrin-1 introns, with potentially critical roles in melanoma development. CONCLUSIONS: The property of c-MYC, Sestrin-1, and SRPX2 genes to retain specific introns could be clinically used to molecularly differentiate non-melanoma from melanoma tumors.


Subject(s)
Genetic Testing/methods , Melanoma/genetics , RNA Splicing , Skin Neoplasms/genetics , Aged , Aged, 80 and over , Diagnosis, Differential , Female , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Introns , Male , Melanoma/pathology , Membrane Proteins , Middle Aged , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Neoplasm Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Skin Neoplasms/pathology
17.
J Cell Biochem ; 120(5): 6894-6898, 2019 May.
Article in English | MEDLINE | ID: mdl-30461048

ABSTRACT

Distorted mechanotransduction represents the molecular hallmark of disease mechanobiology and is displayed with common features during the development of various pathophysiologies. Polycystins constitute a family of mechanosensitive proteins that facilitate pathogenic signal transduction mechanisms. The main representatives of the family are polycystin-1 (PC1) and polycystin-2 (PC2), which function as a mechano-induced membrane receptor and a calcium-permeable ion channel, respectively. PC1 and PC2 mediate extracellular mechanical stimulation, induce intracellular molecular signaling and evoke corresponding gene transcription. Recent reports reveal that polycystin-mediated signaling does not occur in polycystic kidney disease only, where it is most prominently studied. It is also present during the development of clinical entities such as endothelial dysfunction and atheromatosis, deregulation of osteoblast differentiation, cancer development, and psoriasis. In this study, we highlight emerging data that support the overall contribution of polycystins to disease mechanobiology and suggest further exploration of this protein family in diseases generated from force-bearing tissue structures.

18.
Ann Transl Med ; 6(12): 245, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30069447

ABSTRACT

Psoriasis is an immune disease of the skin that frequently develops upon triggering events of mechanical nature and leads to increased proliferation and damaged differentiation of keratinocytes of the epidermis. Mechanical forces are mediated through mechanotransduction, which is the process that translates physical cues into biochemical signaling networks. Latest updates underline the role of mechanotransduction during the acquisition of aberrant properties by the keratinocytes of the skin, therefore implying a potential contribution that promotes psoriasis pathogenesis. The present review discusses the mechano-induced signaling pathways and individual molecules that become activated in psoriasis and in keratinocytes, along with mechano-based putative treatment strategies. We also suggest emerging mechanosensitive molecules for further investigation with potential diagnostic and therapeutic utility in psoriasis.

19.
Ann Transl Med ; 6(12): 246, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30069448

ABSTRACT

Transient receptor potential (TRP) channels are cation channels which act as molecular sensors that enable cells to detect and respond to a plethora of mechanical and environmental cues. TRPs are involved in various physiological processes, such as mechanosensation, non-inception and thermosensation, while mutations in genes encoding them can lead to pathological conditions, called "channelopathies". The subfamily of transient receptor potential polycystins (TRPPs), Polycystin 1 (PC1, TRPP1) and Polycystin 2 (PC2, TRPP2), act as mechanoreceptors, sensing external mechanical forces, including strain, stretch and fluid shear stress, triggering a cascade of signaling pathways involved in osteoblastogenesis and ultimately bone formation. Both in vitro studies and research on animal models have already identified their implications in bone homeostasis. However, uncertainty veiling the role of polycystins (PCs) in bone disease urges studies to elucidate further their role in this field. Mutations in TRPPs have been related to autosomal polycystic kidney disease (ADKPD) and research groups try to identify their role beyond their well-established contribution in kidney disease. Such an elucidation would be beneficial for identifying signaling pathways where polycystins are involved in bone diseases related to exertion of mechanical forces such as osteoporosis, osteopenia and craniosynostosis. A better understanding of the implications of TRPPs in bone diseases would possibly lay the cornerstone for effective therapeutic schemes.

20.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3468-3476, 2018 10.
Article in English | MEDLINE | ID: mdl-30077613

ABSTRACT

Psoriatic plaques tend to localize to the knees and elbows, areas that are particularly subject to mechanical stress resulting from bending and friction. Moreover, plaques often develop at sites of mechanical trauma or injury (Koebner phenomenon). Nevertheless, mechanotransduction has never been linked to psoriasis. Polycystins (polycystin-1, PC1; polycystin-2, PC2) are mechanosensitive molecules that function as key regulators of cellular mechanosensitivity and mechanotransduction. The aim of this in vitro study was to investigate the role of polycystins in the development of psoriasis. We showed that PC1 knockdown in HaCaT cells led to an elevated mRNA expression of psoriasis-related biomarkers Ki-67, IL-6, TNF-α, VEGF and Bcl-2, while PC1 functional inhibition was accompanied by increased cell proliferation and migration of HaCaT cells. In addition, PC1 knockdown via siRNA in HaCaT cells was followed by activation of critical molecules of the mTOR and MAPK pathways and this mTOR pathway activation was ERK-dependent. Furthermore, loss of PC1 protein expression and elevated levels of activated mTOR substrates were also observed in human samples of psoriatic plaques. Overall, our study suggests that the PC1/ERK/mTOR signaling axis represents a novel potential mechanism in psoriasis pathogenesis.


Subject(s)
Psoriasis/genetics , TOR Serine-Threonine Kinases/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Cell Line , Cell Movement , Cell Proliferation , Down-Regulation , Gene Knockdown Techniques , Genetic Markers , Humans , MAP Kinase Signaling System , Models, Biological , Psoriasis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...