Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 389(1): 51-60, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38296645

ABSTRACT

Glioblastoma (GBM) is the most frequently diagnosed primary central nervous system tumor in adults. Despite the standard of care therapy, which includes surgical resection, temozolomide chemotherapy, radiation and the newly added tumor-treating fields, median survival remains only ∼20 months. Unfortunately, GBM has a ∼100% recurrence rate, but after recurrence there are no Food and Drug Administration-approved therapies to limit tumor growth and enhance patient survival, as these tumors are resistant to temozolomide (TMZ). Recently, our laboratory reported that lucanthone slows GBM by inhibiting autophagic flux through lysosome targeting and decreases the number of Olig2+ glioma stem-like cells (GSC) in vitro and in vivo. We now additionally report that lucanthone efficiently abates stemness in patient-derived GSC and reduces tumor microtube formation in GSC, an emerging hallmark of treatment resistance in GBM. In glioma tumors derived from cells with acquired resistance to TMZ, lucanthone retains the ability to perturb tumor growth, inhibits autophagy by targeting lysosomes, and reduces Olig2 positivity. We also find that lucanthone may act as an inhibitor of palmitoyl protein thioesterase 1. Our results suggest that lucanthone may function as a potential treatment option for GBM tumors that are not amenable to TMZ treatment. SIGNIFICANCE STATEMENT: We report that the antischistosome agent lucanthone impedes tumor growth in a preclinical model of temozolomide-resistant glioblastoma and reduces the numbers of stem-like glioma cells. In addition, it acts as an autophagy inhibitor, and its mechanism of action may be via inhibition of palmitoyl protein thioesterase 1. As there are no defined therapies approved for recurrent, TMZ-resistant tumor, lucanthone could emerge as a treatment for glioblastoma tumors that may not be amenable to TMZ both in the newly diagnosed and recurrent settings.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Lucanthone , Humans , Temozolomide/pharmacology , Temozolomide/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/metabolism , Lucanthone/pharmacology , Lucanthone/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Glioma/drug therapy , Glioma/pathology , Xenograft Model Antitumor Assays , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Membrane Proteins , Thiolester Hydrolases
2.
Front Oncol ; 12: 852940, 2022.
Article in English | MEDLINE | ID: mdl-35494072

ABSTRACT

Glioblastoma is the most common and aggressive primary brain tumor in adults. Median survival time remains at 16-20 months despite multimodal treatment with surgical resection, radiation, temozolomide and tumor-treating fields therapy. After genotoxic stress glioma cells initiate cytoprotective autophagy, which contributes to treatment resistance, limiting the efficacy of these therapies and providing an avenue for glioma recurrence. Antagonism of autophagy steps has recently gained attention as it may enhance the efficacy of classical chemotherapies and newer immune-stimulating therapies. The modulation of autophagy in the clinic is limited by the low potency of common autophagy inhibitors and the inability of newer ones to cross the blood-brain barrier. Herein, we leverage lucanthone, an anti-schistosomal agent which crosses the blood-brain barrier and was recently reported to act as an autophagy inhibitor in breast cancer cells. Our studies show that lucanthone was toxic to glioma cells by inhibiting autophagy. It enhanced anti-glioma temozolomide (TMZ) efficacy at sub-cytotoxic concentrations, and suppressed the growth of stem-like glioma cells and temozolomide-resistant glioma stem cells. In vivo lucanthone slowed tumor growth: reduced numbers of Olig2+ glioma cells, normalized tumor vasculature, and reduced tumor hypoxia. We propose that lucanthone may serve to perturb a mechanism of temozolomide resistance and allow for successful treatment of TMZ-resistant glioblastoma.

3.
Cell Stress Chaperones ; 16(1): 91-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20680536

ABSTRACT

Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory.


Subject(s)
Cytidine Deaminase/metabolism , HSP70 Heat-Shock Proteins/metabolism , Nucleoside Deaminases/metabolism , Burkitt Lymphoma/enzymology , Cell Line, Tumor , DNA Repair , HSP70 Heat-Shock Proteins/genetics , Humans , Lymphoma, B-Cell/enzymology , RNA Interference , RNA, Small Interfering/metabolism , Time Factors
4.
Cell Stress Chaperones ; 11(3): 240-9, 2006.
Article in English | MEDLINE | ID: mdl-17009597

ABSTRACT

Base excision repair (BER) of DNA damage in irradiated THP1 human leukemic cells was stimulated by pretreating the cells with exogenous recombinant Hsp70. The treatment of THP1 cells with recombinant Hsp70 in cell culture promoted repair by reducing the frequency of apurinic, apyrimidinic (AP) sites in DNA before and after 1.3 Gy of radiation. However, by 30 minutes after 2.6 Gy, accelerated repair of abasic sites supervened, which may contribute to the loss of the very-low-dose cell hypersensitivity seen in clonogenic studies of other laboratories. After irradiation with 2.6 Gy, the crucial initial glycosylase step was markedly incomplete when cells had been transfected 24 hours before with a small interfering RNA (siRNA) designed to inhibit synthesis of Hsp70. In confirmation, lysates from irradiated siRNA-treated cells after 2.6 Gy were deficient in uracil glycosylase activity (UDG). Transfection with a scrambled RNA of the same size did not interfere with the glycosylase step, ie, the prompt conversion of damaged pyrimidine sites to abasic sites as well as the subsequent repair of those sites. BER measured by reduction of DNA AP sites before and after low-dose radiation was also deficient in THP1 cells that had been transfected with the siRNA designed to inhibit synthesis of Hsp70. These results implicate BER and the participation of Hsp70 in the repair of DNA in human leukemic cells with the doses of ionizing radiation used in clinical regimens.


Subject(s)
DNA Repair/physiology , DNA/metabolism , Gamma Rays , HSP70 Heat-Shock Proteins/metabolism , Leukemia, Monocytic, Acute/metabolism , Cell Line, Tumor , DNA/isolation & purification , DNA Damage/radiation effects , Dose-Response Relationship, Radiation , Humans , Kinetics , Leukemia, Monocytic, Acute/pathology , RNA, Small Interfering/metabolism
5.
Cell Stress Chaperones ; 10(1): 37-45, 2005.
Article in English | MEDLINE | ID: mdl-15832946

ABSTRACT

Pretreatment of human leukemia THP-1 cells with heat shock protein Hsp70 (Hsp70) protected them from the cell-lethal effects of the topoisomerase II inhibitor, lucanthone and from ionizing radiation. Cell viability was scored in clonogenic assays of single cells grown in liquid medium containing 0.5% methyl cellulose. Colonies were observed and rapidly scored after staining with the tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. The frequency of abasic sites in the deoxyribonucleic acid (DNA) of THP-1 cells was reduced when these cells were treated with Hsp70. Hsp70 is presumed to have protected the cells by promoting repair of cell DNA, in agreement with previous studies that showed that Hsp70 enhanced base excision repair by purified enzymes. The shoulders of radiation dose-response curves were enhanced by pretreatment of cells with Hsp70 and, importantly, were reduced when cells were transfected with ribonucleic acid designed to silence Hsp70. Hsp70 influenced repair of sublethal damage after radiation.


Subject(s)
Colony-Forming Units Assay , Enzyme Inhibitors/pharmacology , Gamma Rays/adverse effects , HSP70 Heat-Shock Proteins/metabolism , Lucanthone/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Cytoprotection , DNA Damage/drug effects , DNA Damage/radiation effects , DNA Repair , Dose-Response Relationship, Radiation , Humans , Leukemia, Monocytic, Acute/pathology , RNA, Small Interfering/metabolism
6.
Cell Stress Chaperones ; 8(2): 153-61, 2003.
Article in English | MEDLINE | ID: mdl-14627201

ABSTRACT

Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase beta, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase beta was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase beta repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase beta also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood.


Subject(s)
DNA Polymerase beta/metabolism , DNA Repair/physiology , DNA/metabolism , HSP70 Heat-Shock Proteins/metabolism , Deoxycytidine Monophosphate/metabolism , Humans , Peptides/metabolism , Phosphorus Radioisotopes
7.
DNA Repair (Amst) ; 2(3): 259-71, 2003 Mar 01.
Article in English | MEDLINE | ID: mdl-12547389

ABSTRACT

We previously demonstrated the stimulation of human apurinic/apyrimidinic endonuclease 1 (HAP1) by heat shock protein 70 (HSP70). In this work, we further defined the functional interaction between these proteins. Digestion of HSP70 by trypsin released 48 and 43 kDa amino terminal fragments that retained the ability to stimulate HAP1. In agreement with this result, an HSP70 N-terminal deletion mutant protein containing amino acids 1-385 was comparable to the full-length protein in its ability to enhance HAP1 activity. HSP70 mutants containing carboxy terminal amino acids 386-640 stimulated HAP1 only slightly, as did unrelated proteins. These results implicate the amino terminal portion of HSP70 in stimulating the activity of HAP1.


Subject(s)
Carbon-Oxygen Lyases/metabolism , HSP70 Heat-Shock Proteins/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase , HSP70 Heat-Shock Proteins/genetics , Humans , Mutation , Oligonucleotides/metabolism , Peptide Fragments/metabolism , Protein Structure, Tertiary , Trypsin/metabolism
8.
Cancer Invest ; 20(7-8): 983-91, 2002.
Article in English | MEDLINE | ID: mdl-12449731

ABSTRACT

Abasic sites in HeLa cell DNA were increased in frequency by exposing the cells to lucanthone. Cell growth in the presence of lucanthone caused progressive accumulation of abasic sites and loss of cellular DNA. After 2 hr in 8 microM lucanthone, the abundance of abasic sites was 2.4 fold greater than the background of 9.9 +/- 2.0 SE abasic sites/10(6) nucleotides; 80 microM lucanthone in the growth medium increased the level 12.6 +/- 2.5 SE fold and decreased the DNA content in HeLa cells to one-half of the value obtained in untreated cells. The frequency of abasic sites in cellular DNA was determined by the aldehyde reactive probe method, with reference to abasic sites created in plasmid pBR322. The ability of lucanthone to inhibit the normal repair of abasic sites might reflect inhibition of apurinic/apyrimidinic endonuclease (HAP1) by the drug, thereby preventing an early step in the base excision repair pathway. Unrepaired abasic sites prevalent after ionizing radiation are cytotoxic lesions that promote DNA strand breaks. These results suggest a rationale for the joint lethal effects of lucanthone and ionizing radiation in cells and the accelerated tumor regression observed in cancer patients who received the combined therapy.


Subject(s)
Carbon-Oxygen Lyases/metabolism , DNA Damage/drug effects , DNA, Neoplasm/drug effects , HeLa Cells/drug effects , Lucanthone/pharmacology , Binding Sites , Carbon-Oxygen Lyases/genetics , DNA Repair/drug effects , DNA-(Apurinic or Apyrimidinic Site) Lyase , HeLa Cells/enzymology , Humans , Plasmids/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...