Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786339

ABSTRACT

Malignant pleural effusion (MPE) is a manifestation of advanced cancer that requires a prompt and accurate diagnosis. Ultrasonography (US) and computed tomography (CT) are valuable imaging techniques for evaluating pleural effusions; however, their relative predictive ability for a malignant origin remains debatable. This prospective study aimed to compare chest US with CT findings as predictors of malignancy in patients with undiagnosed exudative pleural effusion. Fifty-four adults with undiagnosed exudative pleural effusions underwent comprehensive clinical evaluation including chest US, CT, and histopathologic biopsy. Blinded radiologists evaluated the US and CT images for features suggestive of malignancy, based on predefined criteria. Diagnostic performance measures were calculated using histopathology as a reference standard. Of the 54 patients, 33 (61.1%) had MPEs confirmed on biopsy. No significant differences between US and CT were found in detecting parietal pleural abnormalities, lung lesions, chest wall invasion, or liver metastasis. US outperformed CT in identifying diaphragmatic pleural thickening ≥10 mm (33.3% vs. 6.1%, p < 0.001) and nodularity (45.5% vs. 3%, p < 0.001), whereas CT was superior for mediastinal thickening (48.5% vs. 15.2%, p = 0.002). For diagnosing MPE, diaphragmatic nodularity detected by US had 45.5% sensitivity and 100% specificity, whereas CT mediastinal thickening had 48.5% sensitivity and 90.5% specificity. Both US and CT demonstrate reasonable diagnostic performance for detecting MPE, with particular imaging findings favoring a malignant origin. US may be advantageous for evaluating diaphragmatic pleural involvement, whereas CT is more sensitive to mediastinal abnormalities.

2.
Orthop Res Rev ; 16: 111-123, 2024.
Article in English | MEDLINE | ID: mdl-38741666

ABSTRACT

Purpose: Carpal tunnel syndrome (CTS) is a common condition characterized by compression of the median nerve (MN) within the carpal tunnel. Accurate diagnosis and assessment of CTS severity are crucial for appropriate management decisions. This study aimed to investigate the combined diagnostic utility of B-mode ultrasound (US) and shear wave elastography (SWE) for assessing the severity of CTS in comparison to electrodiagnostic tests (EDT). Materials and Methods: This prospective observational study was conducted over 9-month periods at a tertiary care hospital. A total of 48 patients (36 females, 12 males; mean age 44 ± 10.9 years; age range 28-57 years) with clinically suspected CTS were enrolled. All patients underwent EDT, US, and SWE. Based on the EDT results, CTS cases were categorized into four groups: mild, moderate, severe, and negative. The cross-sectional area (CSA) and elasticity (E) of the MN were measured at the tunnel inlet (CSAu and Eu) and pronator quadratus region (CSAo and Eo). The differences (CSAu-CSAo and Eu-Eo) were calculated. The primary outcomes were the diagnostic performance of CSAu, CSAu-CSAo, Eu, and Eu-Eo in differentiating moderate/severe from mild/negative CTS compared to EDT findings. Secondary outcomes included a correlation of US/SWE parameters with EDT grades and between each other. ANOVA, correlation, regression, and receiver operating characteristic (ROC) curve analyses were performed. Results: CSAu and CSAu-CSAo increased progressively with worsening CTS severity. E measurements were significantly higher in moderate-to-severe CTS compared to mild or negative cases. The combined metric of CSAu-CSAo at a 5 mm threshold exhibited enhanced performance, with a higher sensitivity (83.3%), specificity (100%), and area under the curve (AUC) (0.98), surpassing the results of CSAu when used independently. Similarly, the SWE measurements indicated that Eu-Eo at a 56.1kPa cutoff achieved an AUC of 0.95, with a sensitivity of 93.3% and specificity of 94.4%, outperforming the metrics for Eu when used alone, which had an AUC of 0.93, with identical sensitivity and specificity values (93.3% and 94.4%, respectively). Conclusion: The integration of ultrasound, shear wave elastography, and electrodiagnostic tests provides a comprehensive approach to evaluate anatomical and neurological changes and guide management decisions for CTS.

3.
Biomedicines ; 12(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672241

ABSTRACT

Gliomas are a type of brain tumor that requires accurate monitoring for progression following surgery. The Brain Tumor Reporting and Data System (BT-RADS) has emerged as a potential tool for improving diagnostic accuracy and reducing the need for repeated operations. This prospective multicenter study aimed to evaluate the diagnostic accuracy and reliability of BT-RADS in predicting tumor progression (TP) in postoperative glioma patients and evaluate its acceptance in clinical practice. The study enrolled patients with a history of partial or complete resection of high-grade glioma. All patients underwent two consecutive follow-up brain MRI examinations. Five neuroradiologists independently evaluated the MRI examinations using the BT-RADS. The diagnostic accuracy of the BT-RADS for predicting TP was calculated using histopathology after reoperation and clinical and imaging follow-up as reference standards. Reliability based on inter-reader agreement (IRA) was assessed using kappa statistics. Reader acceptance was evaluated using a short survey. The final analysis included 73 patients (male, 67.1%; female, 32.9%; mean age, 43.2 ± 12.9 years; age range, 31-67 years); 47.9% showed TP, and 52.1% showed no TP. According to readers, TP was observed in 25-41.7% of BT-3a, 61.5-88.9% of BT-3b, 75-90.9% of BT-3c, and 91.7-100% of BT-RADS-4. Considering >BT-RADS-3a as a cutoff value for TP, the sensitivity, specificity, and accuracy of the BT-RADS were 68.6-85.7%, 84.2-92.1%, and 78.1-86.3%, respectively, according to the reader. The overall IRA was good (κ = 0.75) for the final BT-RADS classification and very good for detecting new lesions (κ = 0.89). The readers completely agreed with the statement "the application of the BT-RADS should be encouraged" (score = 25). The BT-RADS has good diagnostic accuracy and reliability for predicting TP in postoperative glioma patients. However, BT-RADS 3 needs further improvements to increase its diagnostic accuracy.

4.
Diagnostics (Basel) ; 14(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38472965

ABSTRACT

Understanding the consistency of pituitary macroadenomas is crucial for neurosurgeons planning surgery. This retrospective study aimed to evaluate the utility of diffusion-weighted imaging (DWI) and the apparent diffusion coefficient (ADC) as non-invasive imaging modalities for predicting the consistency of pituitary macroadenomas. This could contribute to appropriate surgical planning and therefore reduce the likelihood of incomplete resections. The study included 45 patients with pathologically confirmed pituitary macroadenomas. Conventional MRI sequences, DWIs, ADC maps, and pre- and post-contrast MRIs were performed. Two neuroradiologists assessed all of the images. Neurosurgeons assessed the consistency of the tumor macroscopically, and histopathologists examined it microscopically. The MRI findings were compared with postoperative data. According to the operative data, macroadenomas were divided into the two following categories based on their consistency: aspirable (n = 27) and non-aspirable tumors (n = 18). A statistically significant difference in DWI findings was found when comparing macroadenomas of different consistencies (p < 0.001). Most aspirable macroadenomas (66.7%) were hyperintense according to DWI and hypointense on ADC maps, whereas most non-aspirable macroadenomas (83.3%) were hypointense for DWI and hyperintense on ADC maps. At a cut-off value of 0.63 × 10-3 mm2/s, the ADC showed a sensitivity of 85.7% and a specificity of 75% for the detection of non-aspirable macroadenomas (AUC, 0.946). The study concluded that DWI should be routinely performed in conjunction with ADC measurements in the preoperative evaluation of pituitary macroadenomas. This approach may aid in surgical planning, ensure that appropriate techniques are utilized, and reduce the risk of incomplete resection.

SELECTION OF CITATIONS
SEARCH DETAIL
...