Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 14(1): 17615, 2024 07 30.
Article in English | MEDLINE | ID: mdl-39080324

ABSTRACT

The process of brain tumour segmentation entails locating the tumour precisely in images. Magnetic Resonance Imaging (MRI) is typically used by doctors to find any brain tumours or tissue abnormalities. With the use of region-based Convolutional Neural Network (R-CNN) masks, Grad-CAM and transfer learning, this work offers an effective method for the detection of brain tumours. Helping doctors make extremely accurate diagnoses is the goal. A transfer learning-based model has been suggested that offers high sensitivity and accuracy scores for brain tumour detection when segmentation is done using R-CNN masks. To train the model, the Inception V3, VGG-16, and ResNet-50 architectures were utilised. The Brain MRI Images for Brain Tumour Detection dataset was utilised to develop this method. This work's performance is evaluated and reported in terms of recall, specificity, sensitivity, accuracy, precision, and F1 score. A thorough analysis has been done comparing the proposed model operating with three distinct architectures: VGG-16, Inception V3, and Resnet-50. Comparing the proposed model, which was influenced by the VGG-16, to related works also revealed its performance. Achieving high sensitivity and accuracy percentages was the main goal. Using this approach, an accuracy and sensitivity of around 99% were obtained, which was much greater than current efforts.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Neural Networks, Computer , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Image Interpretation, Computer-Assisted/methods , Algorithms , Sensitivity and Specificity
2.
Healthcare (Basel) ; 11(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36833142

ABSTRACT

In today's digital world, and in light of the growing pandemic, many yoga instructors opt to teach online. However, even after learning or being trained by the best sources available, such as videos, blogs, journals, or essays, there is no live tracking available to the user to see if he or she is holding poses appropriately, which can lead to body posture issues and health issues later in life. Existing technology can assist in this regard; however, beginner-level yoga practitioners have no means of knowing whether their position is good or poor without the instructor's help. As a result, the automatic assessment of yoga postures is proposed for yoga posture recognition, which can alert practitioners by using the Y_PN-MSSD model, in which Pose-Net and Mobile-Net SSD (together named as TFlite Movenet) play a major role. The Pose-Net layer takes care of the feature point detection, while the mobile-net SSD layer performs human detection in each frame. The model is categorized into three stages. Initially, there is the data collection/preparation stage, where the yoga postures are captured from four users as well as an open-source dataset with seven yoga poses. Then, by using these collected data, the model undergoes training where the feature extraction takes place by connecting key points of the human body. Finally, the yoga posture is recognized and the model assists the user through yoga poses by live-tracking them, as well as correcting them on the fly with 99.88% accuracy. Comparatively, this model outperforms the performance of the Pose-Net CNN model. As a result, the model can be used as a starting point for creating a system that will help humans practice yoga with the help of a clever, inexpensive, and impressive virtual yoga trainer.

SELECTION OF CITATIONS
SEARCH DETAIL