Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(6): 9589-9601, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571189

ABSTRACT

The Stern-Gerlach experiment, a seminal quantum physics experiment, demonstrated the intriguing phenomenon of particle spin quantization, leading to applications in matter-wave interferometry and weak-value measurements. Over the years, several optical experiments have exhibited similar behavior to the Stern-Gerlach experiment, revealing splitting in both spatial and angular domains. Here we show, theoretically and experimentally, that the Stern-Gerlach effect can be extended into the time and frequency domains. By harnessing Kerr nonlinearity in optical fibers, we couple signal and idler pulses using two pump pulses, resulting in the emergence of two distinct eigenstates whereby the signal and idler are either in phase or out of phase. This nonlinear coupling emulates a synthetic magnetization, and by varying it linearly in time, one eigenstate deflects towards a higher frequency, while the other deflects towards a lower frequency. This effect can be utilized to realize an all-optical, phase-sensitive frequency beam splitter, establishing a new paradigm for classical and quantum data processing of frequency-bin superposition states.

2.
Opt Express ; 31(1): 684-697, 2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36607002

ABSTRACT

Opto-electronic oscillators are sources of microwave-frequency tones that may reach very low noise levels. Much effort is being dedicated to the realization of oscillators based on photonic integrated devices. In this work, we propose and demonstrate a thermo-elastic opto-electronic oscillator at 2.213 GHz frequency based on a standard silicon-photonic integrated circuit. A microwave-frequency electrical signal modulates an optical pump wave carrier. The modulated waveform launches surface acoustic waves in a silicon-on-insulator substrate, through absorption in a metallic grating and thermo-elastic actuation. The waveform is reconverted to the optical domain through photoelastic modulation of an optical probe wave carrier in a standard racetrack resonator waveguide. Both the thermo-elastic actuation and the photoelastic modulation are radio-frequency selective. The output probe wave is detected, and the receiver voltage is amplified and fed back to modulate the optical pump input. Sufficient gain drives the loop into oscillations. The oscillator does not involve piezoelectricity and can be realized on any substrate. Long acoustic delays may be implemented in compact devices. The frequency of operation is scalable to tens of GHz. The principle may be useful in integrated microwave-photonic signal processing and in the elastic analysis of surfaces and thin layers.

3.
Opt Express ; 30(22): 39321-39328, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36298886

ABSTRACT

Forward Brillouin scattering interactions support the sensing and analysis of media outside the cladding boundaries of standard fibers, where light cannot reach. Quantitative point-sensing based on this principle has yet to be reported. In this work, we report a forward Brillouin scattering point-sensor in a commercially available, off-the-shelf multi-core fiber. Pump light at the inner, on-axis core of the fiber is used to stimulate a guided acoustic mode of the entire fiber cross-section. The acoustic wave, in turn, induces photoelastic perturbations to the reflectivity of a Bragg grating inscribed in an outer, off-axis core of the same fiber. The measurements successfully analyze refractive index perturbations on the tenth decimal point and distinguish between ethanol and water outside the centimeter-long grating. The measured forward Brillouin scattering linewidths agree with predictions. The acquired spectra are unaffected by forward Brillouin scattering outside the grating region. The results add point-analysis to the portfolio of forward Brillouin scattering optical fiber sensors.

4.
Nat Commun ; 13(1): 3554, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729112

ABSTRACT

Fibre lasers based on backward stimulated Brillouin scattering provide narrow linewidths and serve in signal processing and sensing applications. Stimulated Brillouin scattering in fibres takes place in the forward direction as well, with amplification bandwidths that are narrower by two orders of magnitude. However, forward Brillouin lasers have yet to be realized in any fibre platform. In this work, we report a first forward Brillouin fibre laser, using a bare off-the-shelf, panda-type polarisation maintaining fibre. Pump light in one principal axis provides Brillouin amplification for a co-propagating lasing signal of the orthogonal polarisation. Feedback is provided by Bragg gratings at both ends of the fibre cavity. Single-mode, few-modes and multi-mode regimes of operation are observed. The lasing threshold exhibits a unique environmental sensitivity: it is elevated when the fibre is partially immersed in water due to the broadening of forward Brillouin scattering spectra. The results establish a new type of fibre laser, with potential for ultra-high coherence and precision sensing of media outside the cladding.

5.
Light Sci Appl ; 10(1): 119, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34092787

ABSTRACT

Opto-mechanical interactions in guided wave media are drawing great interest in fundamental research and applications. Forward stimulated Brillouin scattering, in particular, is widely investigated in optical fibres and photonic integrated circuits. In this work, we report a comprehensive study of forward stimulated Brillouin scattering over standard, panda-type polarization maintaining fibres. We distinguish between intra-polarization scattering, in which two pump tones are co-polarized along one principal axis, and inter-polarization processes driven by orthogonally polarized pump waves. Both processes are quantified in analysis, calculations and experiment. Inter-modal scattering, in particular, introduces cross-polarization switching of probe waves that is non-reciprocal. Switching takes place in multiple wavelength windows. The results provide a first demonstration of opto-mechanical non-reciprocity of forward scatter in standard fibre. The inter-polarization process is applicable to distributed sensors of media outside the cladding and coating boundaries, where light cannot reach. The process may be scaled towards forward Brillouin lasers, optical isolators and circulators and narrowband microwave-photonic filters over longer sections of off-the-shelf polarization maintaining fibres.

6.
Nat Commun ; 9(1): 2991, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30065284

ABSTRACT

Optical fibres constitute an exceptional sensing platform. However, standard fibres present an inherent sensing challenge: they confine light to an inner core. Consequently, distributed fibre sensors are restricted to the measurement of conditions that prevail within the core. This work presents distributed analysis of media outside unmodified, standard fibre. Measurements are based on stimulated scattering by guided acoustic modes, which allow us to listen where we cannot look. The protocol overcomes a major difficulty: guided acoustic waves induce forward scattering, which cannot be mapped using time-of-flight. The solution relies on mapping the Rayleigh backscatter contributions of two optical tones, which are coupled by the acoustic wave. Analysis is demonstrated over 3 km of fibre with 100 m resolution. Measurements distinguish between air, ethanol and water outside the cladding, and between air and water outside polyimide-coated fibres. The results establish a new sensor configuration: optomechanical time-domain reflectometry, with several potential applications.

7.
Sci Rep ; 8(1): 9514, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29934556

ABSTRACT

Opto-mechanical oscillators that generate coherent acoustic waves are drawing much interest, in both fundamental research and applications. Narrowband oscillations can be obtained through the introduction of feedback to the acoustic wave. Most previous realizations of this concept, sometimes referred to as "phonon lasers", relied on radiation pressure and moving boundary effects in micro- or nano-structured media. Demonstrations in bulk crystals required cryogenic temperatures. In this work, stimulated emission of highly-coherent acoustic waves is achieved in a commercially-available multi-core fiber, at room temperature. The fiber is connected within an opto-electronic cavity loop. Pump light in one core is driving acoustic waves via electrostriction, whereas an optical probe wave at a different physical core undergoes photo-elastic modulation by the stimulated acoustic waves. Coupling between pump and probe is based entirely on inter-core, opto-mechanical cross-phase modulation: no direct optical feedback is provided. Single-frequency mechanical oscillations at hundreds of MHz frequencies are obtained, with side-mode suppression that is better than 55 dB. A sharp threshold and rapid collapse of the linewidth above threshold are observed. The linewidths of the acoustic oscillations are on the order of 100 Hz, orders of magnitude narrower than those of the pump and probe light sources. The relative Allan's deviation of the frequency is between 0.1-1 ppm. The frequency may be switched among several values by propagating the pump or probe waves in different cores. The results may be used in sensing, metrology and microwave-photonic information processing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...