Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221243

ABSTRACT

Bacterial panicle blight (BPB) has become one of the most destructive diseases of rice worldwide and Burkholderia gladioli and B. glumae are two major pathogens causing BPB (1). This disease causes several types of damage, most importantly grain spotting, rot, and panicle blight, which can result in yield losses of 75% or more (1,3). In recent years, symptoms including sheath rot, grain spotting, grain rot, and panicle blight have been observed in both inbred and hybrid rice varieties. These symptoms resemble those of BPB and cause cultivar-dependent yield losses. (3) also reported the same symptoms for BPB. To confirm the cause of the disease, 21 rice panicles (Haridhan, a local variety) with typical BPB symptoms were collected from a farmer's field in the region of Mymensingh, Bangladesh during the rainy season in mid-October, 2021. Due to the severity of the outbreak, the panicles became dark brown and produced chaffy grains; nearly 100% of the rice panicles in that field were severely infected. To identify the causal pathogen(s), 1g of rice grains from 20 plants with typical BPB symptoms were surface-sterilized by immersing them in 70% ethanol for a few seconds followed by sodium hypochlorite solution (3%) for 1min. The grains were then rinsed with sterilized distilled water three times. Surface-sterilized grains were then ground with a mortar and pestle; 5mL of sterile distilled water was added during grinding. The extracted suspension (20µL) was then either streaked or spread onto the selective medium (S-PG) (2). Bacterial colonies showing purple color on the S-PG medium were selected and purified as candidate pathogens. For molecular characterization, species specific primers targeting gyrB gene were used to perform PCR and resulted in 479bp as reported by (4). To verify further, the PCR products of 16SF & 16SR were amplified and sequenced partially producing around 1400bp (1) and five 16SF partial sequences were deposited into NCBI GenBank (OP108276 to OP108280). 16S rDNA and gyrB revealed almost 99% homology with Burkholderia gladioli (KU851248.1, MZ425424.1) and B. gladioli (AB220893, CP033430) respectively using BLAST analysis. These purified bacterial isolates produced a diffusible light-yellow pigment on King's B medium indicating toxoflavin production (3). The candidate five bacterial isolates were then confirmed by inoculating 10ml suspension 108CFU/mL into the panicles and sheaths of BRRIdhan28 in net house condition as described previously (1). All of the bacterial isolates obtained from the spotted rice grains produced light brown lesions on the inoculated leaf sheath as well as spotting on the grain. To fulfill Koch's postulates, the bacteria were re-isolated from the symptomatic panicles and were confirmed as B. gladioli by analyzing the sequences of gyrB and 16s rDNA genes. Taken together, these results confirmed that B. gladioli is responsible for causing BPB in the rice grain samples that we collected. To our knowledge, this is the first report of BPB caused by B. gladioli in Bangladesh and further research is necessary to develop an effective disease management technique, or else the production of rice will be severely hampered.

2.
Plants (Basel) ; 12(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37176922

ABSTRACT

The application of Trichoderma is a form of biological control that has been effective in combating Xanthomonas oryzae pv. oryzae, the causative agent of the devastating disease known as bacterial blight of rice. In this present study, four strains of Trichoderma, viz., T. paraviridescens (BDISOF67), T. erinaceum (BDISOF91), T. asperellum (BDISOF08), and T. asperellum (BDISOF09), were collected from the rice rhizosphere and used to test their potentiality in reducing bacterial blight. The expression patterns of several core defense-related enzymes and genes related to SA and JA pathways were studied to explore the mechanism of induced resistance by those Trichoderma strains. The results primarily indicated that all Trichoderma were significantly efficient in reducing the lesion length of the leaf over rice check variety (IR24) through enhancing the expression of core defense-related enzymes, such as PAL, PPO, CAT, and POD activities by 4.27, 1.77, 3.53, and 1.57-fold, respectively, over control. Moreover, the results of qRT-PCR exhibited an upregulation of genes OsPR1, OsPR10, OsWRKY45, OsWRKY62, OsWRKY71, OsHI-LOX, and OsACS2 after 24 h of inoculation with all tested Trichoderma strains. However, in the case of RT-PCR, no major changes in OsPR1 and OsPR10 expression were observed in plants treated with different Trichoderma strains during different courses of time. Collectively, Trichoderma induced resistance in rice against X. oryzae pv. oryzae by triggering these core defense-related enzymes and genes associated with SA and JA pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...