Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39038641

ABSTRACT

BACKGROUND: Oxytocin (OT) is a hypothalamic neuropeptide involved in diverse physiological and behavioral functions, including social-based behavior and food intake control. The extent that OT's role in regulating these two fundamental behaviors is interconnected is unknown and is a critical gap given that social factors have a strong influence on eating behavior in mammals. Here we focus on OT signaling in the dorsal hippocampus (HPCd), a brain region recently linked with eating and social memory, as a candidate system where these functions overlap. METHODS: HPCd OT signaling gain- and loss-of-function strategies were employed in male Sprague-Dawley rats that were trained in a novel social eating procedure to consume their first nocturnal meal under conditions that vary with regards to conspecific presence and familiarity. The endogenous role of HPCd OT signaling was also evaluated for olfactory-based social transmission of food preference learning, sociality, and social recognition memory. RESULTS: HPCd OT administration had no effect on food intake under isolated conditions, yet significantly increased consumption in the presence of a familiar, but not an unfamiliar conspecific. Supporting these results, chronic knockdown of HPCd OT receptor expression eliminated the food intake-promoting effects of a familiar conspecific. HPCd OT receptor knockdown also blocked social transmission of food preference learning and impaired social recognition memory without affecting sociality. CONCLUSION: Collective results identify endogenous HPCd OT signaling as a novel substrate where OT synergistically influences eating and social behaviors, including the social facilitation of eating and the social transmission of food preference.

2.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873229

ABSTRACT

The ability to encode and retrieve meal-related information is critical to efficiently guide energy acquisition and consumption, yet the underlying neural processes remain elusive. Here we reveal that ventral hippocampus (HPCv) neuronal activity dynamically elevates during meal consumption and this response is highly predictive of subsequent performance in a foraging-related spatial memory task. Targeted recombination-mediated ablation of HPCv meal-responsive neurons impairs foraging-related spatial memory without influencing food motivation, anxiety-like behavior, or escape-mediated spatial memory. These HPCv meal-responsive neurons project to the lateral hypothalamic area (LHA) and single-nucleus RNA sequencing and in situ hybridization analyses indicate they are enriched in serotonin 2a receptors (5HT2aR). Either chemogenetic silencing of HPCv-to-LHA projections or intra-HPCv 5HT2aR antagonist yielded foraging-related spatial memory deficits, as well as alterations in caloric intake and the temporal sequence of spontaneous meal consumption. Collective results identify a population of HPCv neurons that dynamically respond to eating to encode meal-related memories.

3.
Nat Commun ; 14(1): 1755, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36990984

ABSTRACT

The lateral hypothalamic area (LHA) integrates homeostatic processes and reward-motivated behaviors. Here we show that LHA neurons that produce melanin-concentrating hormone (MCH) are dynamically responsive to both food-directed appetitive and consummatory processes in male rats. Specifically, results reveal that MCH neuron Ca2+ activity increases in response to both discrete and contextual food-predictive cues and is correlated with food-motivated responses. MCH neuron activity also increases during eating, and this response is highly predictive of caloric consumption and declines throughout a meal, thus supporting a role for MCH neurons in the positive feedback consummatory process known as appetition. These physiological MCH neural responses are functionally relevant as chemogenetic MCH neuron activation promotes appetitive behavioral responses to food-predictive cues and increases meal size. Finally, MCH neuron activation enhances preference for a noncaloric flavor paired with intragastric glucose. Collectively, these data identify a hypothalamic neural population that orchestrates both food-motivated appetitive and intake-promoting consummatory processes.


Subject(s)
Hypothalamic Hormones , Rats , Male , Animals , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Pituitary Hormones , Melanins , Hypothalamic Area, Lateral/metabolism , Neurons/metabolism
4.
Cell Rep ; 40(13): 111402, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170832

ABSTRACT

Remembering the location of a food or water source is essential for survival. Here, we reveal that spatial memory for food location is reflected in ventral hippocampus (HPCv) neuron activity and is impaired by HPCv lesion. HPCv mediation of foraging-related memory involves communication to the lateral septum (LS), as either reversible or chronic disconnection of HPCv-to-LS signaling impairs spatial memory retention for food or water location. This neural pathway selectively encodes appetitive spatial memory, as HPCv-LS disconnection does not affect spatial memory for escape location in a negative reinforcement procedure, food intake, or social and olfactory-based appetitive learning. Neural pathway tracing and functional mapping analyses reveal that LS neurons recruited during the appetitive spatial memory procedure are primarily GABAergic neurons that project to the lateral hypothalamus. Collective results emphasize that the neural substrates controlling spatial memory are outcome specific based on reinforcer modality.


Subject(s)
Hippocampus , Spatial Memory , GABAergic Neurons , Hippocampus/metabolism , Neural Pathways/physiology , Spatial Memory/physiology , Water
5.
Elife ; 102021 05 13.
Article in English | MEDLINE | ID: mdl-33983121

ABSTRACT

Dopamine (DA) is a critical modulator of brain circuits that control voluntary movements, but our understanding of its influence on the activity of target neurons in vivo remains limited. Here, we use two-photon Ca2+ imaging to monitor the activity of direct and indirect-pathway spiny projection neurons (SPNs) simultaneously in the striatum of behaving mice during acute and prolonged manipulations of DA signaling. We find that increasing and decreasing DA biases striatal activity toward the direct and indirect pathways, respectively, by changing the overall number of SPNs recruited during behavior in a manner not predicted by existing models of DA function. This modulation is drastically altered in a model of Parkinson's disease. Our results reveal a previously unappreciated population-level influence of DA on striatal output and provide novel insights into the pathophysiology of Parkinson's disease.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Neurons, Afferent/physiology , Animals , Behavior, Animal/physiology , Calcium/metabolism , Disease Models, Animal , Dopamine/deficiency , Female , Gene Knock-In Techniques , Male , Mice, Inbred C57BL , Mice, Transgenic , Parkinson Disease/physiopathology
6.
Mol Psychiatry ; 26(2): 492-507, 2021 02.
Article in English | MEDLINE | ID: mdl-30824866

ABSTRACT

Insomnia is the most common sleep disorder among adults, especially affecting individuals of advanced age or with neurodegenerative disease. Insomnia is also a common comorbidity across psychiatric disorders. Cognitive behavioral therapy for insomnia (CBT-I) is the first-line treatment for insomnia; a key component of this intervention is restriction of sleep opportunity, which optimizes matching of sleep ability and opportunity, leading to enhanced sleep drive. Despite the well-documented efficacy of CBT-I, little is known regarding how CBT-I works at a cellular and molecular level to improve sleep, due in large part to an absence of experimentally-tractable animals models of this intervention. Here, guided by human behavioral sleep therapies, we developed a Drosophila model for sleep restriction therapy (SRT) of insomnia. We demonstrate that restriction of sleep opportunity through manipulation of environmental cues improves sleep efficiency in multiple short-sleeping Drosophila mutants. The response to sleep opportunity restriction requires ongoing environmental inputs, but is independent of the molecular circadian clock. We apply this sleep opportunity restriction paradigm to aging and Alzheimer's disease fly models, and find that sleep impairments in these models are reversible with sleep restriction, with associated improvement in reproductive fitness and extended lifespan. This work establishes a model to investigate the neurobiological basis of CBT-I, and provides a platform that can be exploited toward novel treatment targets for insomnia.


Subject(s)
Neurodegenerative Diseases , Sleep Initiation and Maintenance Disorders , Adult , Animals , Drosophila , Humans , Sleep , Sleep Initiation and Maintenance Disorders/therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...