Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 106(1-2): 015201, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974567

ABSTRACT

The vacuum breakdown by 10-PW-class lasers is studied in the optimal configuration of laser beams in the form of an m-dipole wave, which maximizes the magnetic field. Using 3D PIC simulations we calculated the threshold of vacuum breakdown, which is about 10 PW. We examined in detail the dynamics of particles and identified particle trajectories which contribute the most to vacuum breakdown in such highly inhomogeneous fields. We analyzed the dynamics of the electron-positron plasma distribution on the avalanche stage. It is shown that the forming plasma structures represent concentric toroidal layers and the interplay between particle ensembles from different spatial regions favors vacuum breakdown. Based on the angular distribution of charged particles and gamma photons a way to experimentally identify the process of vacuum breakdown is proposed.

2.
Phys Rev E ; 105(6-2): 065202, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35854608

ABSTRACT

In studies of interaction of matter with laser fields of extreme intensity there are two limiting cases of a multibeam setup maximizing either the electric field or the magnetic field. In this work attention is paid to the optimal configuration of laser beams in the form of an m-dipole wave, which maximizes the magnetic field. We consider in such highly inhomogeneous fields the advantages and specific features of laser-matter interaction, which stem from individual particle trajectories that are strongly affected by gamma photon emission. It is shown that in this field mode qualitatively different scenarios of particle dynamics take place in comparison with the mode that maximizes the electric field. A detailed map of possible regimes of particle motion (ponderomotive trapping, normal radiative trapping, radial, and axial anomalous radiative trapping), as well as angular and energy distributions of particles and gamma photons, is obtained in a wide range of laser powers up to 300 PW, and it reveals signatures of radiation losses experimentally detectable even with subpetawatt lasers.

3.
Phys Rev E ; 104(6-2): 065201, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030924

ABSTRACT

Particles moving in current sheets under extreme conditions, such as those in the vicinity of pulsars or those predicted on upcoming multipetawatt laser facilities, may be subject to significant radiation losses. We present an analysis of particle motion in model fields of a relativistic neutral electron-positron current sheet in the case when radiative effects must be accounted for. In the Landau-Lifshitz radiation reaction force model, when quantum effects are negligible, an analytical solution for particle trajectories is derived. Based on this solution, for the case when quantum effects are significant an averaged quantum solution in the semiclassical approach is obtained. The applicability region of the solutions is determined and analytical trajectories are found to be in good agreement with those of numerical simulations which account for radiative effects. Based on these results we demonstrate that radiation reaction itself can provide a mechanism of pinching even within a given field consideration.

4.
Phys Rev E ; 99(3-1): 031201, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30999535

ABSTRACT

The cascaded production and dynamics of electron-positron plasma in ultimately focused laser fields of extreme intensity are studied by three-dimensional particle-in-cell simulations with the account of the relevant processes of quantum electrodynamics (QED). We show that, if the laser facility provides a total power above 20 PW, it is possible to trigger not only a QED cascade but also pinching in the produced electron-positron plasma. The plasma self-compression in this case leads to an abrupt rise of the peak density and magnetic (electric) field up to at least 10^{28}cm^{-3} and 1/20 (1/40) of the Schwinger field, respectively. Determining the actual limits and physics of this process might require quantum treatment beyond the used standard semiclassical approach. The proposed setup can thus provide extreme conditions for probing and exploring fundamental physics of the matter and vacuum.

5.
Article in English | MEDLINE | ID: mdl-26565354

ABSTRACT

The impact of quantum effects on electron dynamics in a plane linearly polarized standing wave with relativistic amplitudes is considered. Using spectral analysis of Lyapunov characteristic exponents with and without radiation losses we show that the contraction effect of phase space due to the radiation reaction force in the classical form does not occur in the quantum case when the discreteness of photon emission is taken into account. It is also demonstrated that electron bunch kinetics has a diffusion solution rather than the d'Alambert type solution as in the classical description. For this case, we applied the Markov chain formalism and showed that this method gives exact characteristics of electron bunch evolution, such as motion of the center of mass and electron bunch dimensions.

6.
Phys Rev Lett ; 113(1): 014801, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-25032929

ABSTRACT

We demonstrate that charged particles in a sufficiently intense standing wave are compressed toward, and oscillate synchronously at, the antinodes of the electric field. We call this unusual behavior anomalous radiative trapping (ART). We show using dipole pulses, which offer a path to increased laser intensity, that ART opens up new possibilities for the generation of radiation and particle beams, both of which are high energy, directed, and collimated. ART also provides a mechanism for particle control in high-intensity quantum-electrodynamics experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...