Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 905: 166940, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37690760

ABSTRACT

We presented a framework to evaluate the land use transformations over the Eurasian Steppe (EUS) driven by human activities from 2000 to 2020. Framework involves three main components: (1) evaluate the spatial-temporal dynamics of land use transitions by utilizing the land change modeler (LCM) and remote sensing data; (2) quantifying the individual contributions of climate change and human activities using improved residual trend analysis (IRTA) and pixel-based partial correlation coefficient (PCC); and (3) quantifying the contributions of land use transitions to Leaf Area Index Intensity (LAII) by using the linear regression. Research findings indicate an increase in cropland (+1.17 % = 104,217 km2) over EUS, while a - 0.80 % reduction over Uzbekistan and - 0.16 % over Tajikistan. From 2000 to 2020 a slight increase in grassland was observed over the EUS region by 0.05 %. The detailed findings confirm an increase (0.24 % = 21,248.62 km2) of grassland over the 1st half (2000-2010) and a decrease (-0.19 % = -16,490.50 km2) in the 2nd period (2011-2020), with a notable decline over Kazakhstan (-0.54 % = 13,690 km2), Tajikistan (-0.18 % = 1483 km2), and Volgograd (-0.79 % = 4346 km2). Area of surface water bodies has declined with an alarming rate over Kazakhstan (-0.40 % = 10,261 km2) and Uzbekistan (-2.22 % = 8943 km2). Additionally, dominant contributions of human activities to induced LULC transitions were observed over the Chinese region, Mongolia, Uzbekistan, and Volgograd regions, with approximately 87 %, 83 %, 92 %, and 47 %, respectively, causing effective transitions to 12,997 km2 of cropland, 24,645 km2 of grassland, 16,763 km2 of sparse vegetation in China, and 12,731.2 km2 to grassland and 15,356.1 km2 to sparse vegetation in Mongolia. Kazakhstan had mixed climate-human impact with human-driven transitions of 48,568 km2 of bare land to sparse vegetation, 27,741 km2 to grassland, and 49,789 km2 to cropland on the eastern sides. Southern regions near Uzbekistan had climatic dominancy, and 8472 km2 of water bodies turned into bare soil. LAII shows an increasing trend rate of 0.63 year-1, particularly over human-dominant regions. This study can guide knowledge of oscillations and reduce adverse impacts on ecosystems and their supply services.


Subject(s)
Ecosystem , Environmental Monitoring , Humans , Remote Sensing Technology , Human Activities , Water , China
2.
Environ Sci Pollut Res Int ; 30(40): 91915-91928, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37480535

ABSTRACT

Vegetation cover change and its interaction with climate are significant to study as it has impact on ecosystem stability. We used the Normalized Difference Vegetation Index (NDVI) and climatic factors (temperature and rainfall) for investigating the relationship between vegetation and climate. We also traced spatiotemporal changes in the vegetation in Pakistan from 2000 to 2020; we used the Hurst exponent to estimate future vegetation trends in Pakistan. Our results show an increase in vegetation throughout Pakistan, and the Punjab Province is showing the highest significant vegetation trend at 88.51%. Our findings reveal that the response of vegetation to climate change varies by region and is influenced by local climatic conditions. However, the relationship between rainfall and annual NDVI is stronger than the temperature in the study area-Pakistan. The Hurst exponent value is above 0.5 in all four provinces, that is, the indication of consistent vegetation trends in the future. The highest values are observed in Punjab and Khyber Pakhtunkhwa (KPK). In the Punjab Province, 88.41% of the area showed positive development, with forests in particular showing a significant positive effect on land use classes. On the other hand, the Sindh Province has the highest negative result at 2.87%, with urban areas showing the highest negative development. To sum up, the NDVI pattern and change attribute suggest vegetation restoration in Pakistan.


Subject(s)
Climate Change , Ecosystem , Pakistan , Forests , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...