Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Future Med Chem ; 15(19): 1757-1772, 2023 10.
Article in English | MEDLINE | ID: mdl-37842772

ABSTRACT

Aims: The current study aimed to develop new thiourea derivatives as potential α-glucosidase inhibitors for the management of hyperglycemia in patients of Type 2 diabetes, with a focus on identifying safer and more effective antidiabetic agents. Materials & methods: New thiourea derivatives (1-16) were synthesized through single-step chemical transformation and evaluated for in vitro α-glucosidase inhibition. Kinetic studies identified the mode of inhibition, free energy and type of interactions were analyzed through density functional theory and molecular docking. Results & conclusion: Compound 5 was identified as the most potent, noncompetitive and noncytotoxic inhibitor of α-glucosidase enzyme with a half-maximal inhibitory concentration of 24.62 ± 0.94 µM. Computational studies reinforce experimental results, demonstrating significant enzyme interactions via hydrophobic and π-π stacking forces.


Subject(s)
Diabetes Mellitus, Type 2 , Glycoside Hydrolase Inhibitors , Humans , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , alpha-Glucosidases/metabolism , Molecular Docking Simulation , Diabetes Mellitus, Type 2/drug therapy , Aminopyridines , Kinetics , Density Functional Theory , Thiourea/pharmacology , Structure-Activity Relationship , Molecular Structure
2.
Comput Biol Med ; 151(Pt A): 106284, 2022 12.
Article in English | MEDLINE | ID: mdl-36370580

ABSTRACT

The worldwide pandemic of coronavirus disease 2019 (COVID-19) along with the various newly discovered major SARS-CoV-2 variants, including B.1.1.7, B.1.351, and B.1.1.28, constitute the Variant of Concerns (VOC). It's difficult to keep these variants from spreading over the planet. As a result of these VOCs, the fifth wave has already begun in several countries. The rapid spread of VOCs is posing a serious threat to human civilization. There is currently no specific medicine available for the treatment of COVID-19. Here, we present the findings of methods that used a combination of structure-assisted drug design, virtual screening, and high-throughput screening to swiftly generate lead compounds against Mpro protein of SARs-CoV-2. Therapeutics, in addition to vaccinations, are an essential element of the healthcare response to COVID-19's persistent threat. In the current study, we designed the efficient compounds that may combat all emerging variants of SARs-CoV-2 by targeting the common Mpro protein. The present study was aimed to discover new compounds that may be proposed as new therapeutic agents to treat COVID-19 infection without any adverse effects. For this purpose, a computational-based virtual screening of 352 in-house synthesized compounds library was performed through molecular docking and Molecular Dynamics (MD) simulation approach. As a result, four novel potent compounds were successfully shortlisted by implementing certain pharmacological, physiological, and ADMET criteria i.e., compounds 3, 4, 21, and 22. Furthermore, MD simulations were performed to evaluate the stability and dynamic behavior of these compounds with Mpro complex for about 30 ns. Eventually, compound 22 was found to be highly potent against Mpro protein and was further evaluated by applying 100 ns simulations. Our findings showed that these shortlisted compounds may have potency to treat the COVID-19 infection for which further experimental validation is proposed as part of a follow-up investigation.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Molecular Docking Simulation , Pandemics , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology
3.
J Enzyme Inhib Med Chem ; 31(6): 1392-403, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26912275

ABSTRACT

Tyramine derivatives 3-27 were synthesized by using conventional and environmental friendly ultrasonic techniques. These derivatives were then evaluated for the first time for their α-glucosidase (Sources: Saccharomyces cerevisiae and mammalian rat-intestinal acetone powder) inhibitory activity by using in vitro mechanism-based biochemical assays. Compounds 7, 14, 20, 21 and 26 were found to be more active (IC50 = 49.7 ± 0.4, 318.8 ± 3.7, 23.5 ± 0.9, 302.0 ± 7.3 and 230.7 ± 4.0 µM, respectively) than the standard drug, acarbose (IC50 = 840.0 ± 1.73 µM (observed) and 780 ± 0.028 µM (reported)) against α-glucosidase obtained from Saccharomyces cerevisiae. Kinetic studies were carried out on the most active members of the series in order to determine their mode of inhibition and dissociation constants. Compounds 7, 20 and 26 were found to be the competitive inhibitors of α-glucosidase. These compounds were also screened for their protein antiglycation, and dipeptidyl peptidase-IV (DPP-IV) inhibitory activities. Only compounds 20, 22 and 27 showed weak antiglycation activity with IC50 values 505.27 ± 5.95, 581.87 ± 5.50 and 440.58 ± 2.74 µM, respectively. All the compounds were found to be inactive against DDP-IV enzyme. Inhibition of α-glucosidase, DPP-IV enzymes and glycation of proteins are valid targets for the discovery of antidiabetic drugs. Cytotoxicity of compounds 3-27 was also evaluated by using mouse fibroblast 3T3 cell lines. All the compounds were found to be noncytotoxic. The current study describes the synthesis α-glucosidase inhibitory activity of derivatives, based on a natural product tyramine template. The compounds reported here may serve as the starting point for the design and development of novel α-glucosidase inhibitors as antidiabetic agents.


Subject(s)
Glycoside Hydrolase Inhibitors/pharmacology , Tyramine/analogs & derivatives , Ultrasonics , alpha-Glucosidases/metabolism , Animals , Glycoside Hydrolase Inhibitors/chemical synthesis , In Vitro Techniques , Kinetics , Rats , Saccharomyces cerevisiae/enzymology , Spectrum Analysis/methods , Tyramine/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...