Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38475570

ABSTRACT

Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. Studies on the genetic makeup and composition of bioactive compounds have revealed them to be rich in steroidal alkaloids, saponins, terpenes, flavonoids, and phenolics. The Solanaceae family, having a rich abundance of bioactive compounds with varying degrees of pharmacological activities, holds significant promise in the management of different diseases. Investigation into Solanum species has revealed them to exhibit a wide range of pharmacological properties, including antioxidant, hepatoprotective, cardioprotective, nephroprotective, anti-inflammatory, and anti-ulcerogenic effects. Phytochemical analysis of isolated compounds such as diosgenin, solamargine, solanine, apigenin, and lupeol has shown them to be cytotoxic in different cancer cell lines, including liver cancer (HepG2, Hep3B, SMMC-772), lung cancer (A549, H441, H520), human breast cancer (HBL-100), and prostate cancer (PC3). Since analysis of their phytochemical constituents has shown them to have a notable effect on several signaling pathways, a great deal of attention has been paid to identifying the biological targets and cellular mechanisms involved therein. Considering the promising aspects of bioactive constituents of different Solanum members, the main emphasis was on finding and reporting notable cultivars, their phytochemical contents, and their pharmacological properties. This review offers mechanistic insights into the bioactive ingredients intended to treat different ailments with the least harmful effects for potential applications in the advancement of medical research.

2.
Pharmaceutics ; 13(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34452226

ABSTRACT

Myxobacteria are unicellular, Gram-negative, soil-dwelling, gliding bacteria that belong to class δ-proteobacteria and order Myxococcales. They grow and proliferate by transverse fission under normal conditions, but form fruiting bodies which contain myxospores during unfavorable conditions. In view of the escalating problem of antibiotic resistance among disease-causing pathogens, it becomes mandatory to search for new antibiotics effective against such pathogens from natural sources. Among the different approaches, Myxobacteria, having a rich armor of secondary metabolites, preferably derivatives of polyketide synthases (PKSs) along with non-ribosomal peptide synthases (NRPSs) and their hybrids, are currently being explored as producers of new antibiotics. The Myxobacterial species are functionally characterized to assess their ability to produce antibacterial, antifungal, anticancer, antimalarial, immunosuppressive, cytotoxic and antioxidative bioactive compounds. In our study, we have found their compounds to be effective against a wide range of pathogens associated with the concurrence of different infectious diseases.

3.
Article in English | MEDLINE | ID: mdl-26641283

ABSTRACT

Self aggregation, sorption, and interaction of Congo red, with cetyltrimethylammonium bromide (CTAB), sodium dodecylsulfate (SDS), Ag(+) ions and silver nanoparticles have been determined spectrophotometrically. Congo red self-aggregation was identified from UV-visible spectra due to the shrinkage in an absorption band at 495 nm. The shape of the absorbance spectrum changed entirely with increasing [Congo red] but wavelength maxima remain unchanged. The molar absorptivity was found to be 9804 mol(-1) dm(3) cm(-1) at 495 nm. Absorption spectra of Congo red with Ag(+) ions show an isosbestic point. The complex formation constant and difference in absorption coefficients were found to be 8.5 × 10(4) mol(-1) dm(3) and 11,764 mol(-1) dm(3) cm(-1), respectively. Silver nano-particles could not be used for the catalytic degradation of Congo red because it results in the formation of a strong complex with them. Sodium dodecylsulfate did not show any significant interaction with this dye. Congo red was also used as a probe to determine the critical micellar concentration of CTAB.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 140: 265-73, 2015 Apr 05.
Article in English | MEDLINE | ID: mdl-25615680

ABSTRACT

Starch-capped copper nanoparticles (CuNPs) were prepared by a chemical reduction method using hydrazine, copper sulfate and starch as reducing, oxidizing and stabilizing agents, respectively, for the first time at room temperature. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction patterns (EDX), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR) spectroscopy, thermo-gravimetric analysis (TGA), and ultraviolet-visible spectroscopy. The effect of [starch], [hydrazine] and [copper sulfate] on the optical properties of CuNPs were studied by UV-visible spectrophotometrically. The hydrazine concentrations have large impact on the surface Plasmon resonance absorbance, nature of the reaction time curves and reaction rates decreases with [hydrazine]. Starch concentrations have no effect on the path of the CuNPs formation. The hexahedral with some irregular shaped CuNPs were formed in presence of starch with diameter 900 nm. Starch acted as a stabilizing, shape-directing and capping agent during the growth processes. The KI-I2 reagent could not replace CuNps from the inner helical structure of starch.


Subject(s)
Copper/chemistry , Metal Nanoparticles/chemistry , Hydrazines/chemistry , Metal Nanoparticles/ultrastructure , Oxidation-Reduction , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Starch/chemistry , Thermogravimetry , X-Ray Diffraction
5.
Carbohydr Polym ; 107: 167-73, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24702932

ABSTRACT

Silver nanocomposites (AgCPs) have been synthesized by chemical reduction from silver nitrate and sodium borohydride in presence of two stabilizers. Starch and poly (vinyl) alcohol, PVA with its rich source of polyhydroxy groups has been exploited for the capping of AgCPs. The ageing of NaBH4 aqueous solution, molar ratios of the reactants, nature of the stabilizers, mixing order of NaBH4 as well as capping agents have great influence on the morphology of AgCPs. We used the iodometric titration to conform the encapsulation of AgCPs inside the helical structure of starch. The reversible nature of encapsulation has been studied by UV-vis spectroscopic technique. Well-dispersed with an approximate size of 10nm and aggregated with an approximate size of 24-52 nm AgCPs were observed in the absence and presence of stabilizers (starch and PVA), respectively. TEM images indicates that the reaction mixture containing different order of reactants and stabilizers (PVA+NaBH4+Ag(+), PVA+Ag(+)+NaBH4, starch+NaBH4+Ag(+) and starch+Ag(+)+NaBH4) have different morphology. Added electrolytes (NaCl, NaBr and NaI) do not detached the Ag(+) ions from the surface of AgNCs.


Subject(s)
Borohydrides/chemistry , Nanocomposites/chemistry , Polyvinyl Alcohol/chemistry , Silver Nitrate/chemistry , Starch/chemistry , Capsules , Oxidation-Reduction , Temperature , Water/chemistry
6.
Colloids Surf B Biointerfaces ; 98: 85-90, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22652360

ABSTRACT

Stable silver nanoparticles were synthesized by the reduction of silver ions with a Paan (Piper betel) leaf petiole extract in absence and presence of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulphate (SDS). The reaction process was simple and convenient to handle, and was monitored using ultraviolet-visible spectroscopy. Absorbance of Ag-nanoparticles increases with the concentrations of Paan leaf extract, acts as reducing, stabilizing and capping agents. The polyphenolic groups of petiole extract are responsible to the rapid reduction of Ag(+) ions into metallic Ag(0). The results indicated that the shape of the spectra, number of peaks and its position strongly depend on the concentration of CTAB, which played a shape-controlling role during the formation of silver nanoparticles in the solutions, whereas SDS has no significant effect. The morphology (spherical, truncated triangular polyhedral plate and some irregular nanoparticles) and crystalline phase of the particles were determined from transmission electron microscopy (TEM) and selected area electron diffraction (SAED).


Subject(s)
Metal Nanoparticles/chemistry , Piper/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Silver/chemistry , Surface-Active Agents/chemistry , Cetrimonium , Cetrimonium Compounds/chemistry , Microscopy, Electron, Transmission , Sodium Dodecyl Sulfate/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...