Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 13(5): 1962-8, 2013 May 08.
Article in English | MEDLINE | ID: mdl-23586702

ABSTRACT

A fundamental understanding of chemical sensing mechanisms in graphene-based chemical field-effect transistors (chemFETs) is essential for the development of next generation chemical sensors. Here we explore the hidden sensing modalities responsible for tailoring the gas detection ability of pristine graphene sensors by exposing graphene chemFETs to electron donor and acceptor trace gas vapors. We uncover that the sensitivity (in terms of modulation in electrical conductivity) of pristine graphene chemFETs is not necessarily intrinsic to graphene, but rather it is facilitated by external defects in the insulating substrate, which can modulate the electronic properties of graphene. We disclose a mixing effect caused by partial overlap of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of adsorbed gas molecules to explain graphene's ability to detect adsorbed molecules. Our results open a new design space, suggesting that control of external defects in supporting substrates can lead to tunable graphene chemical sensors, which could be developed without compromising the intrinsic electrical and structural properties of graphene.

SELECTION OF CITATIONS
SEARCH DETAIL
...