Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 390(4): 635-45, 2009 Jul 24.
Article in English | MEDLINE | ID: mdl-19427318

ABSTRACT

The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 A and 2.0 A resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical "canonical" fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.


Subject(s)
Models, Molecular , Sarcoptes scabiei/enzymology , Serine Endopeptidases/chemistry , Animals , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Mutation , Peptide Library , Phylogeny , Protein Conformation , Serine Endopeptidases/genetics
2.
PLoS One ; 4(3): e4727, 2009.
Article in English | MEDLINE | ID: mdl-19266095

ABSTRACT

Chromatin condensation to heterochromatin is a mechanism essential for widespread suppression of gene transcription, and the means by which a chromatin-associated protein, MENT, induces a terminally differentiated state in cells. MENT, a protease inhibitor of the serpin superfamily, is able to undergo conformational change in order to effect enzyme inhibition. Here, we sought to investigate whether conformational change in MENT is 'fine-tuned' in the presence of a bound ligand in an analogous manner to other serpins, such as antithrombin where such movements are reflected by a change in intrinsic tryptophan fluorescence. Using this technique, MENT was found to undergo structural shifts in the presence of DNA packaged into nucleosomes, but not naked DNA. The contribution of the four Trp residues of MENT to the fluorescence change was mapped using deconvolution analysis of variants containing single Trp to Phe mutations. The analysis indicated that the overall emission spectra is dominated by a helix-H tryptophan, but this residue did not dominate the conformational change in the presence of chromatin, suggesting that other Trp residues contained in the A-sheet and RCL regions contribute to the conformational change. Mutagenesis revealed that the conformational change requires the presence of the DNA-binding 'M-loop' and D-helix of MENT, but is independent of the protease specificity determining 'reactive centre loop'. The D-helix mutant of MENT, which is unable to condense chromatin, does not undergo a conformational change, despite being able to bind chromatin, indicating that the conformational change may contribute to chromatin condensation by the serpin.


Subject(s)
Avian Proteins/chemistry , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/chemistry , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Binding Sites , Chickens , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA/metabolism , Erythrocytes/chemistry , Fluorescence , Mutagenesis, Site-Directed , Nucleosomes/metabolism , Phenylalanine , Protein Conformation , Tryptophan
3.
Science ; 317(5844): 1548-51, 2007 Sep 14.
Article in English | MEDLINE | ID: mdl-17717151

ABSTRACT

Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterial and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.


Subject(s)
Bacterial Proteins/chemistry , Photorhabdus/chemistry , Protein Conformation , Protein Folding , Amino Acid Motifs , Amino Acid Sequence , Animals , Bacterial Proteins/metabolism , Complement Membrane Attack Complex/chemistry , Complement Membrane Attack Complex/metabolism , Crystallography, X-Ray , Cytotoxins/chemistry , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Sequence Data , Perforin , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Pore Forming Cytotoxic Proteins/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Vertebrates
4.
EMBO J ; 25(13): 3144-55, 2006 Jul 12.
Article in English | MEDLINE | ID: mdl-16810322

ABSTRACT

Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome. Remarkably, our studies suggest that the reactive centre loop, a region of the MENT molecule essential for chromatin bridging in vivo and in vitro, is able to mediate formation of a loop-sheet oligomer. These data provide mechanistic insight into chromatin compaction by a non-histone architectural protein and suggest how the structural plasticity of serpins has adapted to mediate physiological, rather than pathogenic, loop-sheet linkages.


Subject(s)
Chromatin/metabolism , DNA-Binding Proteins/chemistry , Models, Molecular , Serpins/chemistry , Animals , Binding Sites , Cathepsin L , Cathepsins/chemistry , Crystallography, X-Ray , Cysteine Endopeptidases/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Mutation , Nucleosomes/metabolism , Protein Conformation , Serpins/genetics , Serpins/metabolism
5.
J Biol Chem ; 280(23): 22356-64, 2005 Jun 10.
Article in English | MEDLINE | ID: mdl-15760906

ABSTRACT

Maspin is a serpin that acts as a tumor suppressor in a range of human cancers, including tumors of the breast and lung. Maspin is crucial for development, because homozygous loss of the gene is lethal; however, the precise physiological role of the molecule is unclear. To gain insight into the function of human maspin, we have determined its crystal structure in two similar, but non-isomorphous crystal forms, to 2.1- and 2.8-A resolution, respectively. The structure reveals that maspin adopts the native serpin fold in which the reactive center loop is expelled fully from the A beta-sheet, makes minimal contacts with the core of the molecule, and exhibits a high degree of flexibility. A buried salt bridge unique to maspin orthologues causes an unusual bulge in the region around the D and E alpha-helices, an area of the molecule demonstrated in other serpins to be important for cofactor recognition. Strikingly, the structural data reveal that maspin is able to undergo conformational change in and around the G alpha-helix, switching between an open and a closed form. This change dictates the electrostatic character of a putative cofactor binding surface and highlights this region as a likely determinant of maspin function. The high resolution crystal structure of maspin provides a detailed molecular framework to elucidate the mechanism of function of this important tumor suppressor.


Subject(s)
Crystallography, X-Ray/methods , Serpins/chemistry , Animals , Binding Sites , Cathepsin L , Cathepsins/chemistry , Chickens , Circular Dichroism , Cysteine Endopeptidases/chemistry , Extracellular Matrix , Genes, Tumor Suppressor , Homozygote , Humans , Mice , Models, Molecular , Plasmids/metabolism , Protein Binding , Protein Conformation , Protein Structure, Secondary , Rats , Recombinant Proteins/chemistry , Spectrophotometry , Static Electricity , Temperature , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...