Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 218: 116940, 2020 09.
Article in English | MEDLINE | ID: mdl-32422402

ABSTRACT

While the behavior of "being musically creative"- improvising, composing, songwriting, etc.-is undoubtedly a complex and highly variable one, recent neuroscientific investigation has offered significant insight into the neural underpinnings of many of the creative processes contributing to such behavior. A previous study from our research group (Bashwiner et al., 2016), which examined two aspects of brain structure as a function of creative musical experience, found significantly increased cortical surface area or subcortical volume in regions of the default-mode network, a motor planning network, and a "limbic" network. The present study sought to determine how these regions coordinate with one another and with other regions of the brain in a large number of participants (n â€‹= â€‹218) during a task-neutral period, i.e., during the "resting state." Deriving from the previous study's results a set of eleven regions of interest (ROIs), the present study analyzed the resting-state functional connectivity (RSFC) from each of these seed regions as a function of creative musical experience (assessed via our Musical Creativity Questionnaire). Of the eleven ROIs investigated, nine showed significant correlations with a total of 22 clusters throughout the brain, the most significant being located in bilateral cerebellum, right inferior frontal gyrus, midline thalamus (particularly the mediodorsal nucleus), and medial premotor regions. These results support prior reports (by ourselves and others) implicating regions of the default-mode, executive, and motor-planning networks in musical creativity, while additionally-and somewhat unanticipatedly-including a potentially much larger role for the salience network than has been previously reported in studies of musical creativity.


Subject(s)
Creativity , Music/psychology , Neural Pathways/physiology , Rest/physiology , Adolescent , Adult , Brain Mapping , Executive Function , Female , Humans , Limbic System/diagnostic imaging , Limbic System/physiology , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neural Pathways/diagnostic imaging , Surveys and Questionnaires , Young Adult
2.
Sci Rep ; 6: 20482, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26888383

ABSTRACT

Creative behaviors are among the most complex that humans engage in, involving not only highly intricate, domain-specific knowledge and skill, but also domain-general processing styles and the affective drive to create. This study presents structural imaging data indicating that musically creative people (as indicated by self-report) have greater cortical surface area or volume in a) regions associated with domain-specific higher-cognitive motor activity and sound processing (dorsal premotor cortex, supplementary and pre-supplementary motor areas, and planum temporale), b) domain-general creative-ideation regions associated with the default mode network (dorsomedial prefrontal cortex, middle temporal gyrus, and temporal pole), and c) emotion-related regions (orbitofrontal cortex, temporal pole, and amygdala). These findings suggest that domain-specific musical expertise, default-mode cognitive processing style, and intensity of emotional experience might all coordinate to motivate and facilitate the drive to create music.


Subject(s)
Creativity , Functional Neuroimaging , Limbic System/diagnostic imaging , Limbic System/physiology , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Adolescent , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...