Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690722

ABSTRACT

BACKGROUND: Sheath blight and bakanae disease, prominent among emerging rice ailments, exert a profound impact on rice productivity, causing severe impediments to crop yield. Excessive use of older fungicides may lead to the development of resistance in the pathogen. Indeed, a pressing and immediate need exists for novel, low-toxicity and highly selective fungicides that can effectively combat resistant fungal strains. RESULTS: A series of 20 isoxazole derivatives were synthesized using alkoxy/halo acetophenones and N,N-dimethylformamidedimethylacetal. These compounds were characterized by various spectroscopic techniques, namely 1H nuclear magnetic resonance (NMR), 13C NMR and liquid chromatography-high-resolution mass spectrometry, and were evaluated for their fungicidal activity against Rhizoctonia solani and Fusarium fujikuroi. Compound 5n (5-(2-chlorophenyl) isoxazole) exhibited highest activity (effective dose for 50% inhibition [ED50] = 4.43 µg mL-1) against R. solani, while 5p (5-(2,4-dichloro-2-hydroxylphenyl) isoxazole) exhibited highest activity (ED50 = 6.7 µg mL-1) against F. fujikuroi. Two-dimensional quantitative structural-activity relationship (QSAR) analysis, particularly multiple linear regression (MLR) (Model 1), highlighted chi6chain and DistTopo as the key descriptors influencing fungicidal activity. Molecular docking studies revealed the potential of these isoxazole derivatives as novel fungicides targeting sterol 14α-demethylase enzyme, suggesting their importance as crucial intermediates for the development of novel and effective fungicides. CONCLUSION: All test compounds were effective in inhibiting both fungi, according to the QSAR model, with various descriptors, such as structural, molecular shape analysis, electronic and thermodynamic, playing an important role. Molecular docking studies confirmed that these compounds can potentially replace commercially available fungicides and help control fungal pathogens in rice crops effectively. © 2024 Society of Chemical Industry.

2.
Planta ; 259(6): 143, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704489

ABSTRACT

MAIN CONCLUSION: The investigation is the first report on genome-wide identification and characterization of NBLRR genes in pearl millet. We have shown the role of gene loss and purifying selection in the divergence of NBLRRs in Poaceae lineage and candidate CaNBLRR genes for resistance to Magnaporthe grisea infection. Plants have evolved multiple integral mechanisms to counteract the pathogens' infection, among which plant immunity through NBLRR (nucleotide-binding site, leucine-rich repeat) genes is at the forefront. The genome-wide mining in pearl millet (Cenchrus americanus (L.) Morrone) revealed 146 CaNBLRRs. The variation in the branch length of NBLRRs showed the dynamic nature of NBLRRs in response to evolving pathogen races. The orthology of NBLRRs showed a predominance of many-to-one orthologs, indicating the divergence of NBLRRs in the pearl millet lineage mainly through gene loss events followed by gene gain through single-copy duplications. Further, the purifying selection (Ka/Ks < 1) shaped the expansion of NBLRRs within the lineage of pear millet and other members of Poaceae. Presence of cis-acting elements, viz. TCA element, G-box, MYB, SARE, ABRE and conserved motifs annotated with P-loop, kinase 2, RNBS-A, RNBS-D, GLPL, MHD, Rx-CC and LRR suggests their putative role in disease resistance and stress regulation. The qRT-PCR analysis in pearl millet lines showing contrasting responses to Magnaporthe grisea infection identified CaNBLRR20, CaNBLRR33, CaNBLRR46 CaNBLRR51, CaNBLRR78 and CaNBLRR146 as putative candidates. Molecular docking showed the involvement of three and two amino acid residues of LRR domains forming hydrogen bonds (histidine, arginine and threonine) and salt bridges (arginine and lysine) with effectors. Whereas 14 and 20 amino acid residues of CaNBLRR78 and CaNBLRR20 showed hydrophobic interactions with 11 and 9 amino acid residues of effectors, Mg.00g064570.m01 and Mg.00g006570.m01, respectively. The present investigation gives a comprehensive overview of CaNBLRRs and paves the foundation for their utility in pearl millet resistance breeding through understanding of host-pathogen interactions.


Subject(s)
Cenchrus , Disease Resistance , Plant Diseases , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Cenchrus/genetics , Phylogeny , Magnaporthe/physiology , Multigene Family , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Genome, Plant/genetics , Pennisetum/genetics , Pennisetum/microbiology , Pennisetum/immunology
3.
Arch Microbiol ; 206(4): 200, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564016

ABSTRACT

Fusarium wilt of lentil caused by Fusarium oxysporum f. sp. lentis (Fol) is a destructive pathogen limiting lentil production in India. In the present study, Secreted in Xylem (SIX) effectors genes were explored in Indian races of Fol and also a diagnostic tool for reliable detection of the disease was developed. Four SIX effectors genes, SIX11, SIX13, SIX6 and SIX2 were identified in 12 isolates of Fol belonging to seven races. SIX11 was present in all the races while SIX 13 was absent in race 6 and SIX6 was present only in race 4. The phylogenetic analysis revealed the conserved nature of the SIX genes within the forma specialis and showed sequence homology with F. oxysporum f. sp. pisi. The presence of three effectors, SIX11, SIX13 and SIX6 in race 4 correlates with high disease incidence in lentil germplasms. The in-silico characterization revealed the presence of signal peptide and localization of the effectors. Further SIX11 effector gene present in all the isolates was used to develop Fol-specific molecular marker for accurate detection. The marker developed could differentiate F. oxysporum f. sp. lycopersici, F. solani, F. oxysporum, Rhizoctonia solani and Sclerotium rolfsii and had a detection limit of 0.01ng µL- 1. The effector-based marker detection helps in the unambiguous detection of the pathogen under field conditions.


Subject(s)
Fusarium , Phylogeny , Genetic Markers , Fusarium/genetics , Xylem
5.
Front Microbiol ; 15: 1287721, 2024.
Article in English | MEDLINE | ID: mdl-38450160

ABSTRACT

Wheat, a staple food crop for 35% of the global population, faces a threat from Helminthosporium leaf blight (HLB), a complex of spot blotch (Bipolaris sorokiniana) and tan spot (Pyrenophora-tritici-repentis) diseases under warm and humid conditions. However, in Indian conditions, the knowledge of existing pathogen populations associated with the HLB complex is limited and largely dominated by only B. sorokiniana (spot blotch). To address this, diseased samples were collected from all six wheat growing zones during 2020-2022. The pathogenic species were identified through in-depth morphological characterization, supplemented with ITS-rDNA and GAPDH sequence analysis, a diagnostic SCAR marker, and pathogenicity studies on two wheat varieties: Sonalika and HD2733. The 32 isolates collected from 10 different states consist of B. spicifera (12.5% of all isolates), Exserohilum rostratum (9.3%), Bipolaris oryzae (3.1%), and B. sorokiniana (75%). B. sorokiniana exhibited the highest disease severity on both varieties. Other lesser-known pathogenic species also produced comparable disease severity as B. sorokiniana isolates and, therefore are economically important. Unraveling pathogen composition and biology aids in disease control and resistance breeding. Our study highlights economically impactful and lesser-known pathogenic species causing wheat leaf blight/spot blotch in India, guiding both current management and future resistance breeding strategies in plant pathology.

6.
Heliyon ; 10(5): e26538, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434297

ABSTRACT

Maydis leaf blight is a significant disease of maize caused by Bipolaris maydis race T, O and C. Molecular mechanisms regulating defense responses in non-CMS maize towards race O fungus are not fully known. In the present investigation, comparative transcriptome profiling was conducted on a highly resistant maize genotype SC-7-2-1-2-6-1 against a standard susceptible variety CM 119 at 48 h post inoculation (h PI) along with non-infected control. mRNA sequencing generated 38.4 Gb data, where 9349602 reads were mapped uniquely in SC-7, whereas 2714725 reads were mapped uniquely in CM-119. In inoculated SC-7, the total number of differentially expressed genes (DEGs) against control was 1413, where 1011 were up-regulated, and 402 were down-regulated. In susceptible inoculated genotype CM 119, the number of DEGs against control was 2902, where 1703 were up-, and 1199 were down-regulated. DEGs between inoculated resistant and susceptible genotypes were 10745, where 5343 were up-, and 5402 were down-regulated. The RNA-seq data were validated using RT-qPCR. The key findings are that SC-7 poses a robust plant signaling system mainly induced by oxidation-reduction process and calcium-mediated signaling. It regulates its fitness-related genes efficiently, viz., aldolase 2 gene, isopropanoid, phyto hormones, P450 cytochrome, amino acid synthesis, nitrogen assimilation genes etc. These findings showed more transcriptional changes in the SC-7 genotype, which contains many defence-related genes. They can be explored in future crop development programmes to combat multiple maize diseases. The current finding provides information to elucidate molecular and cellular processes occurring in maize during B. maydis race O infection.

7.
Front Plant Sci ; 14: 1265176, 2023.
Article in English | MEDLINE | ID: mdl-38023939

ABSTRACT

Bakanae disease caused by Fusarium fujikuroi is an emerging disease of rice causing losses in all rice-growing regions around the world. A BC2F2 population was developed by backcrossing the recurrent parent Pusa Basmati 1121 (PB1121) with the recombinant inbred line RIL28, which harbors a major quantitative trait locus (QTL) governing resistance to bakanae, qBK1.2. MassARRAY-based single-nucleotide polymorphism (SNP) assays targeting the genomic region of qBK1.2 helped in fine mapping the QTL to a region of 130 kb between the SNP markers rs3164311 and rs3295562 using 24 recombinants. In-silico mining of the fine-mapped region identified 11 putative candidate genes with functions related to defense. The expression analysis identified two significantly differentially expressed genes, that is, LOC_Os01g06750 and LOC_Os01g06870, between the susceptible genotype PB1121 and the resistant genotypes Pusa1342 and R-NIL4. Furthermore, the SNPs identified in LOC_Os01g06750 produced minor substitutions of amino acids with no major effect on the resistance-related functional motifs. However, LOC_Os01g06870 had 21 amino acid substitutions, which led to the creation of the leucine-rich repeat (LRR) domain in the resistant genotype Pusa1342, thereby making it a potential candidate underlying the major bakanae-resistant QTL qBK1.2. The markers used in the fine mapping program are of immense utility in marker-assisted breeding for bakanae resistance in rice.

8.
3 Biotech ; 13(11): 379, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37900266

ABSTRACT

Chaetomium globosum Kunze, an internationally recognized biocontrol fungus. It mycoparasitizes various plant pathogens and produce antifungal metabolites to suppress the growth of pathogenic fungi. Lack of detailed genome level diversity studies has delimited the development and utilization of potential C. globosum strains. The present study was taken to reveal the distribution, identification, and characterization of expressed sequence tag-simple sequence repeats (EST-SSRs) in C. globosum. RNA-Seq experiment was performed for C. globosum potential isolate Cg2 (AY429049) using Illumina HiSeq 2500. Reference-guided de novo assembly yielded 45,582 transcripts containing 27,957 unigenes. We generated a new set of 8485 EST-SSR markers distributed in 5908 unigene sequences with one SSR locus distribution density per 6.1 kb. Six distinct classes of SSR repeat motifs were identified. The most abundant were mononucleotide repeats (51.67%), followed by tri-nucleotides (36.61%). Out of 5034 EST-SSR primers, 50 primer pairs were selected and validated for the polymorphic study of 15 C. globosum isolates. Twenty-two SSR markers showed average genetic polymorphism among C. globosum isolates. The number of alleles (Na) per marker ranges from 2 to 4, with a total of 74 alleles detected for 22 markers with a mean polymorphism information content (PIC) value of 0.4. UPGMA hierarchical clustering analysis generated three main clusters of C. globosum isolates and exhibited a lower similarity index range from 0.59 to 0.85. Thus, the newly developed EST-SSR markers could replace traditional methods for determining diversity. The study will also enhance the genomic research in C. globosum to explore its biocontrol potential against phytopathogens. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03794-7.

9.
World J Microbiol Biotechnol ; 39(11): 306, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37713019

ABSTRACT

Fusarium wilt is a major threat to lentil production in India and worldwide. The presence of evolving virulent races has imposed the necessity of reliable management practices including breeding for resistance using unexplored germplasms. The magnitude of resistance by the plant is determined by rapid recognition of the pathogen and induction of defence genes. Resistance gene analogues have been key factors involved in the recognition and induction of defence response. In the present study, the expression of key RGA previously cloned was determined in three resistant accessions (L65, L83 and L90) and a susceptible accession (L27). The expression was assessed via qPCR at 24, 48 and 72 hpi against virulent race5 (CG-5). All the RGAs differentially transcribed in resistant and susceptible accession showed temporal variation. RGA Lc2, Lc8, Ln1 and Lo6 produced cDNA signals during early infection (24 hpi) predicting its involvement in recognition. LoRGA6 showed significant upregulation in L65 and L83 while downregulating in L27 and the full length of LoRGA6 loci was isolated by 5' and 3' RACE PCR. In-silico characterization revealed LoRGA6 loci code for 912 amino acids long polypeptide with a TIR motif at the N terminal and eight LRR motifs at the C terminal. The tertiary structure revealed a concave pocket-like structure at the LRR domain potentially involved in pathogen effectors interaction. The loci have ADP binding domain and ATPase activity. This has further paved the path for functional analysis of the loci by VIGS to understand the molecular mechanism of resistance.


Subject(s)
Fusarium , Lens Plant , Lens Plant/genetics , Fusarium/genetics , Plant Breeding , Up-Regulation , Amino Acids
11.
Plants (Basel) ; 12(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986991

ABSTRACT

The bakanae disease of rice, or foolish seedling disease, is a well-known pathogen infecting rice hosts. Several studies have characterized Fusarium fujikuroi isolates collected from distant geographical regions and within similar geographical areas for secondary metabolite production, population structure, and diversity analysis, but none have attempted to characterize the isolates for virulence in a differential set of rice genotypes. Based on the disease response, a set of five rice genotypes with differing resistance levels were selected as a differential set for further characterization of the pathogen. Ninety-seven Fusarium fujikuroi isolates collected from different rice-growing areas of the country during the years 2011 to 2020 were characterized and evaluated for bakanae disease. Rice genotypes PB1509 and C101A51 were found to be highly susceptible and highly resistant, respectively. Further, based on the disease response, the isolates were grouped into 15 pathotypes. Pathotype 1, with the maximum isolates (19), was observed to be most prevalent, followed by pathotypes 2 and 3. Pathotype 8 was classified as highly virulent, as all the genotypes were susceptible, except for C101A51. When we compared the pathotype distribution in different states, pathotypes 11 and 15 were found to have originated from the state of Punjab. A positive correlation could be established between six pathotype groups and the gene expression of virulence-related genes such as acetylxylan (FFAC), exopolygalacturanase (FFEX), and pisatin demethylase (FFPD). The present study provides the distribution profiles of different pathotypes in Basmati-growing states of India, which will be further helpful for the deployment of breeding strategies and bakanae disease management.

12.
Plant Dis ; 107(3): 896-898, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36265154

ABSTRACT

Ustilaginoidea virens is the fungal pathogen causing an emerging false smut disease that affects crop yield as well as deteriorates quality of the grains by producing mycotoxins. A high quality genome of U. virens isolate UV2_4G was sequenced using Nanopore and Illumina HiSeq 2,000 sequencing platforms. The total assembled genome of Indian isolate UV2_4G was 35.9 Mb, which comprised 89 scaffolds with N50 of 700,296 bp. A total of 358,697 variants were identified in the genome, out of which 355,173 were SNPs and 3,524 were INDELS. Further, 7,390 SSRs belonging to different repeat types were also identified in the genome. Out of 7,444 proteins predicted, 7,206 were functionally annotated. A total of 1,307 CAZymes, 501 signal peptides, 1,876 effectors, and 2,709 genes involved in host-pathogen interactions were identified. Comparative analysis revealed isolate UV2_4G is distinct with 31 unique clusters and placed distantly in phylogenetic analysis. Taken together, this high-quality genome assembly and sequence annotation resource can give an improved insight for characterizing the biological and pathogenic mechanisms of U. virens.


Subject(s)
Hypocreales , Oryza , Ustilaginales , Oryza/microbiology , Phylogeny , Plant Diseases/microbiology , Hypocreales/genetics , Ustilaginales/genetics
13.
Front Genet ; 13: 1048578, 2022.
Article in English | MEDLINE | ID: mdl-36467997

ABSTRACT

C. globosum is an endophytic fungus, which is recorded effective against several fungal and bacterial diseases in plants. The exclusively induce defense as mechanism of biocontrol for C. globosum against phyto-pathogens is reported. Our pervious study states the effectiveness of induced defense by C. globosum (Cg), in tomato against Alternaria solani. In this study the temporal transcriptome analysis of tomato plants after treatment with C. globosum was performed for time points at 0 hpCi, 12 hpCi, 24 hpCi and 96 phCi. The temporal expression analysis of genes belonging to defense signaling pathways indicates the maximum expression of genes at 12 h post Cg inoculation. The sequential progression in JA signaling pathway is marked by upregulation of downstream genes (Solyc10g011660, Solyc01g005440) of JA signaling at 24 hpCi and continued to express at same level upto 96 hpCi. However, the NPR1 (Solyc07g040690), the key regulator of SA signaling is activated at 12 h and repressed in later stages. The sequential expression of phenylpropanoid pathway genes (Solyc09g007920, Solyc12g011330, Solyc05g047530) marks the activation of pathway with course of time after Cg treatment that results in lignin formation. The plant defense signaling progresses in sequential manner with time course after Cg treatment. The results revealed the involvement of signaling pathways of ISR and SAR in systemic resistance induced by Cg in tomato, but with temporal variation.

14.
Mol Biol Rep ; 49(12): 11959-11972, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36271308

ABSTRACT

BACKGROUND: Fusarium fujikuroi causing bakanae is one of the most significant pathogens of rice and much responsible for yield losses thereby emerging as a major risk to food security. METHODS: In the present study transcriptomic analysis was conducted between two contrasting resistant (C101A51) and susceptible (Rasi) genotypes of rice with the combinations of C101A51 control (CC) vs. C101A51 inoculated (CI); Rasi control (RC) vs. Rasi inoculated (RI) and C101A51 inoculated (CI) vs. Rasi inoculated (RI). RESULTS: In CC vs. CI commonly expressed genes were 12,764. Out of them 567 (4%) were significantly upregulated and 1399 (9%) genes were downregulated. For the RC vs. RI 14, 333 (79%) genes were commonly expressed. For CI vs. RI 13,662 (72%) genes were commonly expressed. Genes related to cysteine proteinase inhibitor 10, disease resistance protein TAO1-like, oleosin 16 kDa-like, pathogenesis-related protein (PR1), (PR4), BTB/POZ and MATH domain-containing protein 5-like, alpha-amylase isozyme were upregulated in resistant genotype C101A51. Whereas, genes related to GDSL esterase/lipase, serine glyoxylate aminotransferase, CASP-like protein 2C1, WAT1-related protein, Cytoplasmic linker associated proteins, xyloglucan endotransglucosylase/hydrolase protein and ß-D xylosidase 7 were upregulated in susceptible genotype Rasi. Gene ontology analysis showed functions related to defence response (GO:0006952), regulation of plant hypersensitive type response (GO:0010363), Potassium ion transmembrane activity (GO:0015079), chloroplast (GO:0009507), response to wounding (GO:0009611), xylan biosynthetic process (GO:0045492) were upregulated in resistant genotype C101A51 under inoculated conditions. CONCLUSION: Real time PCR based validation of the selected DEGs showed that the qRT-PCR was consistent with the RNA-Seq results. This is the first transcriptomic study against bakanae disease of rice in Indian genotypes. Further, functional studies on identified genes and their utilization through different methodology will be helpful for the development of bakanae disease management strategies.


Subject(s)
Fusarium , Oryza , Oryza/genetics , Oryza/metabolism , Transcriptome/genetics , Plant Diseases/genetics , Fusarium/genetics , Genotype
15.
3 Biotech ; 12(7): 151, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35747503

ABSTRACT

Spot blotch disease of wheat caused by Bipolaris sorokiniana Boerma (Sacc.) is an emerging problem in South Asian countries. Whole genome of a highly virulent isolate of B. sorokiniana BS112 (BHU, Uttar Pradesh; Accession no. GCA_004329375.1) was sequenced using a hybrid assembly approach. Secreted proteins, virulence gene(s), pathogenicity-related gene(s) were identified and the role of ToxA gene present in this genome, in the development of disease was recognized. ToxA gene (535 bp) was analyzed and identified in the genome of B. sorokiniana (BS112) which revealed 100% homology with the ToxA gene of Pyrenophora tritici repentis (Accession no. MH017419). Furthermore, ToxA gene was amplified, sequenced and validated in 39 isolates of B. sorokiniana which confirmed the presence of ToxA gene in all the isolates taken for this study. All ToxA sequences were submitted in NCBI database (MN601358-MN601396). As ToxA gene interacts with Tsn1 gene of host, 13 wheat genotypes were evaluated out of which 5 genotypes (38.4%) were found to be Tsn1 positive with more severe necrotic lesions compared to Tsn1-negative wheat genotypes. In vitro expression analysis of ToxA gene in the pathogen B. sorokiniana using qPCR revealed maximum upregulation (14.67 fold) at 1st day after inoculation (DAI) in the medium. Furthermore, in planta expression analysis of ToxA gene in Tsn1-positive and Tsn1-negative genotypes, revealed maximum expression (7.89-fold) in Tsn1-positive genotype, Agra local at 5th DAI compared to Tsn1-negative genotype Chiriya 7 showing minimum expression (0.048-fold) at 5th DAI. In planta ToxA-Tsn1 interaction studies suggested that spot blotch disease is more severe in Tsn1-positive genotypes, which will be helpful in better understanding and management of spot blotch disease of wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03213-3.

16.
Arch Microbiol ; 204(7): 401, 2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35716233

ABSTRACT

Bakanae disease is an emerging problem for the Basmati rice cultivation in India. Forty-seven endophytes isolated earlier along with three Talaromyces flavus isolates evaluated against Fusaium fujikuroi [Nirenberg] bakanae pathogen [isolate F250] through dual culture and enzymatic assays. Out of 50 isolates, 6 isolates namely, Tf1, Tf2, Tf3, Fusarium equiseti, Fusarium sp. and Trichoderma sp. produced good inhibitory results under in vitro conditions and were proceeded with in planta studies and conducted microscopic studies and real-time PCR assays. Microscopic studies revealed that the defense response system of plants was activated to a longer extent in bioagent treatments, since the number of live nuclei (DAPI staining) and green stained live plant cells (FDA staining) were higher as seen in treated plants when compared to pathogen-inoculated and uninoculated control when observed under confocal laser scanning microscopy. The analysis of cell cycle-related genes expressed during the ROS activity showed increased expression of the cell cycle-related genes involved. The selected isolates were also tested under glasshouse for disease inhibition studies. F. equiseti, Fusarium sp. and Trichoderma sp. gave a disease inhibition of, 87%, 66% and 94%, respectively. Tf2 and Tf1 isolate dominantly inhibited the disease with 95% whereas Tf3 also inhibited successfully with 70%. Through the results of our study, we can deduce that the T. flavus (Tf1, Tf2, Tf3) isolates and the endophytes F. equiseti, Fusarium sp. and Trichoderma sp. may represent an important biocontrol agent to control the bakanae disease of rice and also implicated that could further be befitting to capitalize them for field evaluations.


Subject(s)
Fusarium , Oryza , Trichoderma , India , Oryza/metabolism , Plant Diseases/genetics , Plant Diseases/prevention & control , Trichoderma/genetics
17.
Front Microbiol ; 13: 837056, 2022.
Article in English | MEDLINE | ID: mdl-35572625

ABSTRACT

Bipolaris maydis is pathogen of maize which causes maydis leaf blight disease. In India major losses occur due to the B. maydis race "O" pathogen, whereas in other parts of the world, major losses are due to the race "T" pathogen. In the present study, we conducted an in planta transcriptomics study of the B. maydis race "O" pathogen after infection on non-CMS maize resistant and susceptible genotypes by mRNA sequencing to understand the molecular basis of pathogenicity for better management of the pathogen. Approximately 23.4 GB of mRNA-seq data of B. maydis were obtained from both resistant and susceptible maize backgrounds for fungus. Differentially expressed genes (DEGs) analysis of B. maydis in two different genetic backgrounds suggested that the majority of highly DEGs were associated with mitochondrial, cell wall and chitin synthesis, sugar metabolism, peroxidase activity, mitogen-activated protein kinase (MAPK) activity, and shikimate dehydrogenase. KEGG analysis showed that the biosynthetic pathways for secondary metabolism, antibiotics, and carbon metabolism of fungus were highly enriched, respectively, in susceptible backgrounds during infection. Previous studies in other host pathogen systems suggest that these genes play a vital role in causing disease in their host plants. Our study is probably the first transcriptome study of the B. maydis race "O" pathogen and provides in-depth insight of pathogenicity on the host.

18.
Front Plant Sci ; 13: 881116, 2022.
Article in English | MEDLINE | ID: mdl-35592572

ABSTRACT

Sheath blight caused by necrotrophic fungus Rhizoctonia solani Kühn is one of the most serious diseases of rice. Use of high yielding semi dwarf cultivars with dense planting and high dose of nitrogenous fertilizers accentuates the incidence of sheath blight in rice. Its diverse host range and ability to remain dormant under unfavorable conditions make the pathogen more difficult to manage. As there are no sources of complete resistance, management through chemical control has been the most adopted method for sheath blight management. In this review, we provide an up-to-date comprehensive description of host-pathogen interactions, various control measures such as cultural, chemical, and biological as well as utilizing host plant resistance. The section on utilizing host plant resistance includes identification of resistant sources, mapping QTLs and their validation, identification of candidate gene(s) and their introgression through marker-assisted selection. Advances and prospects of sheath blight management through biotechnological approaches such as overexpression of genes and gene silencing for transgenic development against R. solani are also discussed.

19.
Plants (Basel) ; 11(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35406897

ABSTRACT

Cytokinin glucosyltransferases (CGTs) are key enzymes of plants for regulating the level and function of cytokinins. In a genomic identification of rice CGTs, 41 genes with the plant secondary product glycosyltransferases (PSPG) motif of 44-amino-acid consensus sequence characteristic of plant uridine diphosphate (UDP)-glycosyltransferases (UGTs) were identified. In-silico physicochemical characterisation revealed that, though the CGTs belong to the same subfamily, they display varying molecular weights, ranging from 19.6 kDa to 59.7 kDa. The proteins were primarily acidic (87.8%) and hydrophilic (58.6%) and were observed to be distributed in the plastids (16), plasma membrane (13), mitochondria (5), and cytosol (4). Phylogenetic analysis of the CGTs revealed that their evolutionary relatedness ranged from 70-100%, and they aligned themselves into two major clusters. In a comprehensive analysis of the available transcriptomics data of rice samples representing different growth stages only the CGT, Os04g25440.1 was significantly expressed at the vegetative stage, whereas 16 other genes were highly expressed only at the reproductive growth stage. On the contrary, six genes, LOC_Os07g30610.1, LOC_Os04g25440.1, LOC_Os07g30620.1, LOC_Os04g25490.1, LOC_Os04g37820.1, and LOC_Os04g25800.1, were significantly upregulated in rice plants inoculated with Rhizoctonia solani (RS), Xoo (Xanthomonas oryzae pv. oryzae) and Mor (Magnaporthe oryzae). In a qRT-PCR analysis of rice sheath tissue susceptible to Rhizoctonia solani, Mor, and Xoo pathogens, compared to the sterile distilled water control, at 24 h post-infection only two genes displayed significant upregulation in response to all the three pathogens: LOC_Os07g30620.1 and LOC_Os04g25820.1. On the other hand, the expression of genes LOC_Os07g30610.1, LOC_Os04g25440, LOC_Os04g25490, and LOC_Os04g25800 were observed to be pathogen-specific. These genes were identified as the candidate-responsive CGT genes and could serve as potential susceptibility genes for facilitating pathogen infection.

20.
Front Plant Sci ; 12: 721193, 2021.
Article in English | MEDLINE | ID: mdl-34630468

ABSTRACT

Chaetomium globosum is a potential biological control agent effective against various plant pathogens. Several reports are available on the mycoparastism and antibiosis mechanisms of C. globosum against plant pathogenic fungi, whereas a few states induced resistance. The potential induced defense component of C. globosum (Cg-2) was evaluated against early blight disease of tomato (Solanum lycopersicum) and further, global RNA sequencing was performed to gain deep insight into its mechanism. The expression of marker genes of hormone signaling pathways, such as PR1, PiII, PS, PAL, Le4, and GluB were analyzed using real-time quantitative reverse transcription PCR (qRT-PCR) to determine the best time point for RNA sequencing. The transcriptome data revealed that 22,473 differentially expressed genes (DEGs) were expressed in tomato at 12 h post Cg-2 inoculation as compared with control plants and among these 922 DEGs had a fold change of -2 to +2 with p < 0.05. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the DEGs were belonging to metabolic pathways, biosynthesis of secondary metabolites, plant-pathogen interaction, chlorophyll metabolism, and plant hormone signal transduction. Gene Ontology (GO) analysis revealed that DEGs were enriched mainly related to binding activity (GO:0005488), catalytic activity (GO:0003824), metabolic process (GO:0008152), cellular process (GO:0009987), response to stimulus (GO:0050896), biological regulation (GO:0065007), and transcription regulator activity (GO:0140110). The gene modulations in hormone signaling transduction, phenylpropanoid biosynthesis, and mitogen-activated protein kinases (MPK) signaling indicated the upregulation of genes in these pathways. The results revealed active participation of jasmonic acid (JA) and salicylic acid (SA) signaling transduction pathways which further indicated the involvement of induced systemic resistance (ISR) and systemic acquired resistance (SAR) in the systemic resistance induced by Cg-2 in tomato.

SELECTION OF CITATIONS
SEARCH DETAIL
...