Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Article in English | MEDLINE | ID: mdl-38311294

ABSTRACT

Birds have the highest blood glucose among vertebrates. Several mechanisms may explain this including the lack of a functional insulin-responsive glucose transport protein, high glucagon concentrations, and reliance on lipid oxidation resulting in the production of gluconeogenic precursors. The hypothesis was that interruption of gluconeogenesis using the diabetes medication metformin would lower glucose concentrations in wild-caught birds. We captured two cohorts of adult mourning doves, Zenaida macroura, and acclimated them to captivity for two weeks. In this crossover study, cohort 1 was administered a single dose of one of the following oral treatments each week: metformin (150 or 300 mg/kg), glycogenolysis inhibitor (2.5 mg/kg 1,4-dideoxy-1,4-imino-D-arabinitol (DAB)), or water (50 µL). Whole blood glucose was measured using a glucometer at baseline, 30, 60, and 120 min following the oral doses. In contrast to mammals and chickens, 300 mg/kg metformin did not alter blood glucose (p > 0.05) whereas 150 mg/kg metformin increased blood glucose compared to water (p = 0.043). To examine whether 150 mg/kg metformin stimulated glycogenolysis, we co-administered 150 mg/kg metformin and 2.5 mg/kg DAB, which prevented the hyperglycemic response. Cohort 2 was administered the same treatments and the early response was examined (0, 5, 10, 15 min). Low-dose metformin increased blood glucose within 5 min (p = 0.039) whereas the high dose had no effect. DAB did not prevent the early response to metformin nor did it alter blood glucose concentrations when administered alone (p = 0.887). In conclusion, metformin increases endogenous blood glucose via glycogenolysis in healthy adult male mourning doves.


Subject(s)
Hyperglycemia , Metformin , Humans , Male , Animals , Columbidae , Blood Glucose , Metformin/pharmacology , Cross-Over Studies , Chickens , Hyperglycemia/chemically induced , Animals, Wild , Water , Grief , Mammals
2.
bioRxiv ; 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37577544

ABSTRACT

Could diet and mean plasma glucose concentration (MPGluC) explain the variation in cancer prevalence across species? We collected diet, MPGluC, and neoplasia data for 160 vertebrate species from existing databases. We found that MPGluC negatively correlates with cancer and neoplasia prevalence, mostly of gastrointestinal organs. Trophic level positively correlates with cancer and neoplasia prevalence even after controlling for species MPGluC. Most species with high MPGluC (50/78 species = 64.1%) were birds. Most species in high trophic levels (42/53 species = 79.2%) were reptiles and mammals. Our results may be explained by the evolution of insulin resistance in birds which selected for loss or downregulation of genes related to insulin-mediated glucose import in cells. This led to higher MPGluC, intracellular caloric restriction, production of fewer reactive oxygen species and inflammatory cytokines, and longer telomeres contributing to longer longevity and lower neoplasia prevalence in extant birds relative to other vertebrates.

3.
PLoS One ; 17(10): e0269334, 2022.
Article in English | MEDLINE | ID: mdl-36260638

ABSTRACT

Urbanization is one of the most widespread and extreme examples of habitat alteration. As humans dominate landscapes, they introduce novel elements into environments, including artificial light, noise pollution, and anthropogenic food sources. One understudied form of anthropogenic food is refuse from restaurants, which can alter wildlife populations and, in turn, entire wildlife communities by providing a novel and stable food source. Using data from the Maricopa Association of Governments and the Central Arizona-Phoenix Long Term Ecological Research (CAP LTER) project, we investigated whether and how the distribution of restaurants influences avian communities. The research aimed to identify restaurants, and thus the associated food they may provide, as the driver of potential patterns by controlling for other influences of urbanization, including land cover and the total number of businesses. Using generalized linear mixed models, we tested whether the number of restaurants within 1 km of bird monitoring locations predict avian community richness and abundance and individual species abundance and occurrence patterns. Results indicate that restaurants may decrease avian species diversity and increase overall abundance. Additionally, restaurants may be a significant predictor of the overall abundance of urban-exploiting species, including rock pigeon (Columba livia), mourning dove (Zenaida macroura), and Inca dove (Columbina Inca). Understanding how birds utilize anthropogenic food sources can inform possible conservation or wildlife management practices. As this study highlights only correlations, we suggest further experimental work to address the physiological ramifications of consuming anthropogenic foods provided by restaurants and studies to quantify how frequently anthropogenic food sources are used compared to naturally occurring sources.


Subject(s)
Columbidae , Restaurants , Humans , Animals , Ecosystem , Urbanization , Arizona
4.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R385-R396, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35913000

ABSTRACT

Urbanization influences food quality and availability for many avian species, with increased access to human refuse and food subsidies in built environments. In relation to such nutritional intakes and their presumed impact on microbes harbored in the intestinal tract and metabolic profiles of host physiological systems, our overall knowledge of the role of gut microbiome (GM) and metabolomic expression in the avian host lags far behind our understanding of mammals. Therefore, the objective of this investigation was to examine the potential differential effect of an urban modeled versus control (i.e., bird seed) diet on the GM, the metabolic profiles of plasma, liver, adipose, kidney, and muscle tissues, and circulating endotoxin and inflammatory factors in urban-caught mourning doves (Zenaida macroura). We hypothesized that the urban diet would differently impact the profiles of the GM and tissue metabolomes and increase plasma lipopolysaccharide (LPS) and proinflammatory factors compared with animals fed a seed diet. After a 4-wk-diet period, contents of the large intestine were sequenced to profile the microbiome, metabolomic analyses were performed on plasma and tissue homogenates, and circulating LPS and inflammatory markers were assessed. The composition of the GM was significantly dissimilar between diets, with greater abundance of Erysipelatoclostridiaceae, Sanguibacteraceae, Oribacterium, and Sanguibacter and decreased circulating LPS in the urban-fed birds. These differences were largely not reflected in the surveyed metabolomes and plasma inflammatory markers. This research supports the notion that the microbial composition in urban doves is impacted by diet, though may only weakly associate with host physiology.


Subject(s)
Columbidae , Gastrointestinal Microbiome , Animals , Diet , Grief , Humans , Lipopolysaccharides , Mammals
5.
Adv Nutr ; 13(4): 1324-1393, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35802522

ABSTRACT

The ASN Board of Directors appointed the Nutrition Research Task Force to develop a report on scientific methods used in nutrition science to advance discovery, interpretation, and application of knowledge in the field. The genesis of this report was growing concern about the tone of discourse among nutrition professionals and the implications of acrimony on the productive study and translation of nutrition science. Too often, honest differences of opinion are cast as conflicts instead of areas of needed collaboration. Recognition of the value (and limitations) of contributions from well-executed nutrition science derived from the various approaches used in the discipline, as well as appreciation of how their layering will yield the strongest evidence base, will provide a basis for greater productivity and impact. Greater collaborative efforts within the field of nutrition science will require an understanding that each method or approach has a place and function that should be valued and used together to create the nutrition evidence base. Precision nutrition was identified as an important emerging nutrition topic by the preponderance of task force members, and this theme was adopted for the report because it lent itself to integration of many approaches in nutrition science. Although the primary audience for this report is nutrition researchers and other nutrition professionals, a secondary aim is to develop a document useful for the various audiences that translate nutrition research, including journalists, clinicians, and policymakers. The intent is to promote accurate, transparent, verifiable evidence-based communication about nutrition science. This will facilitate reasoned interpretation and application of emerging findings and, thereby, improve understanding and trust in nutrition science and appropriate characterization, development, and adoption of recommendations.


Subject(s)
Nutritional Sciences , Research Design , Advisory Committees , Humans
6.
Article in English | MEDLINE | ID: mdl-35902002

ABSTRACT

Animals with natural protections against diabetes complications may provide clues to improve human health. Birds are unique in their ability to avoid hyperglycemia-associated complications (e.g., glycation and oxidative stress) despite having naturally high blood glucose (BG) concentrations. This makes them useful models to elucidate strategies to prevent and/or treat diabetes-related complications in mammals. As diet plays a key role in BG concentration and diabetes risk, this systematic review aimed to summarize the effects of macro and micronutrient manipulation on avian BG. Three databases were searched (PubMed, SCOPUS, and Web of Science) for articles that met inclusion criteria: altered at least one nutrient and measured BG in at least one avian species. The search yielded 91 articles that produced 128 datasets (i.e., one nutrient manipulation in one sample). Across all macronutrient manipulations (n = 69 datasets), 62% reported no change in BG and 23% measured an increase (p < 0.001). Within the macronutrient groups (carbohydrate, lipid, protein, and mixed) most datasets showed no change in BG (67%, 62%, 52%, and 86%, respectively). Across micronutrient manipulations (n = 59 datasets), 51% demonstrated no change and 41% decreased BG (p < 0.001). While manipulations that altered vitamin intake largely produced no change in BG (62%), 48% of datasets examining altered mineral intake found no change and 46% decreased BG. Chromium was the most studied micronutrient (n = 24 datasets), where 67% of datasets reported a decrease in BG. These results suggest birds are largely able to maintain blood glucose homeostasis in response to altered nutrient intake indicative of dietary flexibility.


Subject(s)
Hyperglycemia , Trace Elements , Animals , Birds/metabolism , Blood Glucose/metabolism , Diet/veterinary , Energy Intake , Humans , Mammals/metabolism , Micronutrients
7.
Sci Transl Med ; 14(627): eabg3684, 2022 01 12.
Article in English | MEDLINE | ID: mdl-35020407

ABSTRACT

Positron emission tomography (PET) ligands play an important role in the development of therapeutics by serving as target engagement or pharmacodynamic biomarkers. Here, we describe the discovery and translation of the PET tracer [11C]MK-6884 from rhesus monkeys to patients with Alzheimer's disease (AD). [3H]MK-6884/[11C]MK-6884 binds with high binding affinity and good selectivity to an allosteric site on M4 muscarinic cholinergic receptors (M4Rs) in vitro and shows a regional distribution in the brain consistent with M4R localization in vivo. The tracer demonstrates target engagement of positive allosteric modulators of the M4R (M4 PAMs) through competitive binding interactions. [11C]MK-6884 binding is enhanced in vitro by the orthosteric M4R agonist carbachol and indirectly in vivo by the acetylcholinesterase inhibitor donepezil in rhesus monkeys and healthy volunteers, consistent with its pharmacology as a highly cooperative M4 PAM. PET imaging of [11C]MK-6884 in patients with AD identified substantial regional differences quantified as nondisplaceable binding potential (BPND) of [11C]MK-6884. These results suggest that [11C]MK-6884 is a useful target engagement biomarker for M4 PAMs but may also act as a sensitive probe of neuropathological changes in the brains of patients with AD.


Subject(s)
Alzheimer Disease , Acetylcholinesterase , Alzheimer Disease/diagnostic imaging , Animals , Humans , Macaca mulatta , Positron-Emission Tomography/methods , Receptors, Muscarinic
8.
Physiol Biochem Zool ; 94(4): 241-252, 2021.
Article in English | MEDLINE | ID: mdl-34032554

ABSTRACT

AbstractBirds living in urban areas routinely consume anthropogenic foods, but the physiological consequences of this consumption are poorly understood. To address this question, we investigated the effects of an urban diet (UD) in wild, urban-caught mourning doves in a controlled environment. Since anthropogenic foods often contain a high proportion of refined carbohydrate and fat, we predicted that UD consumption alters body mass as well as plasma and tissue metabolites and that it impairs vasodilation. To test this prediction, we compared body mass, various nutritional physiology parameters, and peripheral vasodilation of doves fed an UD (1∶1 ratio of bird seeds and french fries; [Formula: see text]) with those of doves receiving a control diet (CON, bird seed diet; [Formula: see text]) for 4 wk. At the end of the dietary manipulation period, birds were euthanized, and we dissected cranial tibial arteries to measure ex vivo vasodilation in response to acetylcholine treatment after phenylephrine-induced vasoconstriction. We also collected cardiac blood as well as liver, pectoralis, and gastrocnemius muscle samples to measure nutritional metabolite concentrations. Vasodilation of tibial arteries was impaired in UD- compared to CON-fed birds ([Formula: see text]), suggesting the potential for UD consumption to alter cardiovascular function. Body mass, plasma osmolality, glucose, sodium, insulin, triglyceride, uric acid, liver glycogen and triglycerides, and muscle glycogen did not differ between groups. The results suggest that short-term consumption of a diet composed of 50% anthropogenic foods is not associated with major metabolic perturbations in urban mourning doves.


Subject(s)
Animal Feed/analysis , Animals, Wild , Columbidae/physiology , Diet/veterinary , Nutritional Status , Vasodilation/drug effects , Animal Nutritional Physiological Phenomena , Animals , Cities
9.
Evol Med Public Health ; 9(1): eoab010, 2021.
Article in English | MEDLINE | ID: mdl-33747517

ABSTRACT

An evolutionary perspective provides a unifying explanation for the modifiable risk factors and lifestyle-based interventions for the leading causes of morbidity and mortality globally. Non-communicable diseases develop from an evolutionary mismatch between the prior environment and modern patterns of behavior; however, it is unclear whether an evolutionary mismatch narrative could promote positive behavior change in patients. We hypothesize that educating patients about evolutionary mismatch could augment efforts to improve healthful behavior. Specifically, explaining the 'why' behind what is being recommended could promote health literacy and adherence. Furthermore, we offer suggestions of how clinicians could educate patients about evolutionary mismatch for key-lifestyle factors, diet and physical activity, as well as several specific modern diseases. We also consider how to sidestep patients' skepticism of evolutionary theory. Here, we lay the groundwork for research on how educating patients with an evolutionary mismatch narrative could impact health behaviors and improve outcomes.

10.
Article in English | MEDLINE | ID: mdl-33053437

ABSTRACT

The aim of this study was to determine the metabolic effects of a four-week 60% high-fat (HF) diet on mourning doves. Plasma glucose concentrations are, on average, 1.5-2 times higher in birds than in mammals of similar body mass, but birds have innate mechanisms that protect them from high blood glucose-associated pathologies normally developed in mammals. Elucidating these mechanisms may help develop therapeutics for treatment of human diabetes-related complications. A high fat (HF) diet is commonly used in rodents to investigate metabolic disease. We hypothesized that this diet in doves would elevate plasma glucose and alter metabolic physiology compared to the control (CON) diet. Following the four-week long diets, doves were euthanized, and we collected blood, liver, pectoralis muscles, and kidney samples. Contrary to the rodent-models, HF-fed birds did not have increased plasma glucose concentrations relative to CON-fed birds. Metabolomic analyses revealed no group differences in plasma, liver, pectoralis muscle, or kidney metabolites (FDR q-value>0.05 for all). Principal component analysis score plots of metabolites showed no separation between groups, and pathway analyses revealed no significantly altered metabolic pathways between groups (191 pathways across tissues, FDR q-value>0.05). Body mass, plasma uric acid, glucose, and insulin as well as liver and pectoralis muscle glycogen and triglycerides did not differ between groups (p > 0.05 for all). In conclusion, a four-week long high fat diet did not alter plasma glucose concentrations or metabolic physiology in mourning doves, indicating that these birds have mechanisms that allow them to avoid high fat diet-induced pathologies seen in mammals.


Subject(s)
Blood Glucose/metabolism , Columbidae/metabolism , Diet, High-Fat/methods , Metabolomics/methods , Animals , Chromatography, Liquid/methods , Glycogen/metabolism , Humans , Kidney/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Principal Component Analysis , Tandem Mass Spectrometry/methods , Time Factors , Triglycerides/metabolism
11.
Article in English | MEDLINE | ID: mdl-32376459

ABSTRACT

Birds are an enigma: their plasma glucose concentration is 1.5-2 times higher than similar-sized mammals, yet they do not normally exhibit symptoms of diabetes. We hypothesized that feeding adult mourning doves a refined carbohydrate diet (white bread: WB) for four weeks would raise plasma glucose concentrations and alter metabolic pathways and endothelial function when compared to birds receiving a nutritionally-balanced diet (bird seeds: SD). Following the four-week long diets, birds were euthanized, and cardiac blood, liver, and pectoralis muscles were collected for metabolomics analyses and biochemical assays. Cranial tibial arteries were dissected to measure acetylcholine-mediated vasodilation. Contrary to the hypothesis, WB-fed birds did not have increased plasma glucose concentrations. Principle component analysis score plots suggest minimal differences between groups. However, we identified 15 changes in individual metabolite concentrations between diet groups that, although not statistically significant, are highly predictive (area under receive operating curve, AUROC>0.90; number of highly predictive metabolites: 5 of 123 in plasma, 4 of 92 in liver, and 6 of 92 in pectoralis muscle). Moreover, pathway analyses revealed no significantly altered metabolic pathways between groups. Biochemical assays revealed no significant group differences in plasma uric acid and insulin, or pectoralis muscle glycogen concentrations. However, hepatic glycogen concentration was 2.12-fold higher in the WB group than in control doves (p = .015). Diet type did not influence vasodilation. In conclusion, a four-week long white bread diet increased liver glycogen but did not alter plasma glucose concentrations, metabolic or vascular physiology in mourning doves.


Subject(s)
Blood Glucose/metabolism , Columbidae/physiology , Glycogen/metabolism , Liver/metabolism , Animals , Bread , Columbidae/blood , Diet/veterinary , Insulin/blood , Male , Vasodilation/physiology
12.
Int J Mol Sci ; 21(5)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120832

ABSTRACT

Compared to lean counterparts, overweight/obese individuals rely less on lipid during fasting. This deficiency has been implicated in the association between overweight/obesity and blunted insulin signaling via elevated intramuscular triglycerides. However, the capacity for overweight/obese individuals to use lipid during exercise is unclear. This review was conducted to formulate a consensus regarding the influence of overweight/obesity on exercise lipid use. PubMed, ProQuest, ISI Web of Science, and Cochrane Library databases were searched. Articles were included if they presented original research on the influence of overweight/obesity on exercise fuel use in generally healthy sedentary adults. Articles were excluded if they assessed older adults, individuals with chronic disease, and/or exercise limitations or physically-active individuals. The search identified 1205 articles with 729 considered for inclusion after duplicate removal. Once titles, abstracts, and/or manuscripts were assessed, 24 articles were included. The preponderance of evidence from these articles indicates that overweight/obese individuals rely on lipid to a similar extent during exercise. However, conflicting findings were found in eight articles due to the outcome measure cited, participant characteristics other than overweight/obesity and characteristics of the exercise bout(s). We also identified factors other than body fatness which can influence exercise lipid oxidation that should be controlled in future research.


Subject(s)
Diabetes Mellitus, Type 2/blood , Exercise/physiology , Insulin Resistance/physiology , Insulin/blood , Lipid Metabolism/physiology , Obesity/blood , Overweight/blood , Triglycerides/metabolism , Databases, Bibliographic , Female , Humans , Insulin Resistance/genetics , Lipid Metabolism/genetics , Male , Muscles/metabolism , Obesity/diet therapy , Overweight/diet therapy , Signal Transduction/genetics , Signal Transduction/physiology
13.
J Acad Nutr Diet ; 120(4): 548-564, 2020 04.
Article in English | MEDLINE | ID: mdl-31648930

ABSTRACT

BACKGROUND: A main mechanism of action proposed for oral probiotic supplementation is immunomodulation, which is expected to impart health benefits in the host by influencing circulating immune and inflammatory factors. To date, the effectiveness of probiotic supplementation for immunomodulation in healthy adults without disease has not been evaluated in a systematic review. OBJECTIVE: The objective of this systematic review was to evaluate the effect of probiotic supplementation on circulating immune and inflammatory markers of healthy adults compared to placebo. METHODS: PubMed, SCOPUS, ISI Web of Science, ProQuest, and Cochrane databases were searched for English articles up to May 15, 2019. Additional papers were identified by checking references of relevant papers. Only randomized controlled trials studying the administration of probiotic supplements compared to placebo on immune and inflammatory markers in healthy adults (aged 18 to 65 years), without acute or chronic disease, and in generally good health were examined. Independent extraction of articles was conducted by two authors using predefined search terms and restrictions/filters. The methodologic quality of each study was appraised using the Academy of Nutrition and Dietetics Evidence Analysis Library Quality Rating Worksheet and the body of evidence was assessed using the Academy of Nutrition and Dietetics Grade Definitions and Conclusion Grading Table. RESULTS: Eighteen articles, including 819 subjects, met eligibility criteria and were included in the present systematic review. Five articles were rated neutral in quality and 13 were rated high in quality. Eight articles reported a significant effect on immune and/or inflammatory parameters including increases in natural killer cells, lymphocytes, and monocytes, and decreases in proinflammatory cytokine concentrations. CONCLUSIONS: Based on the 18 articles extracted in this systemic review, probiotic supplementation was concluded to have a limited effect on immune and inflammatory markers in healthy adults. Overall, the evidence was heterogenous, precluding a meta-analysis, and difficult to aggregate and conclude on effect size. SYSTEMATIC REVIEW REGISTRATION NUMBER: PROSPERO ref CRD42018110856.


Subject(s)
Dietary Supplements , Immunologic Factors/blood , Immunomodulation/physiology , Inflammation Mediators/blood , Probiotics/administration & dosage , Adolescent , Adult , Aged , Female , Healthy Volunteers , Humans , Male , Middle Aged , Randomized Controlled Trials as Topic , Young Adult
14.
Evol Med Public Health ; 2018(1): 201-210, 2018.
Article in English | MEDLINE | ID: mdl-30254747

ABSTRACT

LAY SUMMARY: Through an online survey of nutrition and dietetic professionals and students, we learned there is interest to incorporate evolutionary medicine into the nutrition and dietetics field and education programs. BACKGROUND AND OBJECTIVES: Evolutionary medicine is an emerging field that examines the evolutionary significance of modern disease to develop new preventative strategies or treatments. While many areas of interest in evolutionary medicine and public health involve diet, we currently lack an understanding of whether nutrition and dietetics professionals and students appreciate the potential of evolutionary medicine. METHODOLOGY: Cross-sectional online survey to measure the level of appreciation, applicability and knowledge of evolutionary medicine among nutrition and dietetics professionals and students. We then examined the relationships between support of evolutionary medicine and (i) professionals and students, (ii) US region, (iii) religious belief and (iv) existing evolutionary knowledge. RESULTS: A total of 2039 people participated: students (n = 893) and professionals (n = 1146). The majority of the participants agree they are knowledgeable on the theory of evolution (59%), an understanding of evolution can aid the nutrition and dietetics field (58%), an evolutionary perspective would be beneficial in dietetics education (51%) and it is equally important to understand both the evolutionary and direct causes of disease (71%). Significant differences in responses between professionals and students suggest students are currently learning more about evolution and are also more supportive of using an evolutionary perspective. Whereas differences in responses by US region were minimal, differences by religious belief and prior evolutionary knowledge were significant; however, all responses were either neutral or supportive at varying strengths. CONCLUSION AND IMPLICATIONS: There is interest among professionals and students to incorporate evolutionary medicine into the nutrition and dietetics field and education programs.

15.
Am J Physiol Regul Integr Comp Physiol ; 312(4): R597-R610, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28148491

ABSTRACT

The taste of sugar elicits cephalic-phase insulin release (CPIR), which limits the rise in blood glucose associated with meals. Little is known, however, about the gustatory mechanisms that trigger CPIR. We asked whether oral stimulation with any of the following taste stimuli elicited CPIR in mice: glucose, sucrose, maltose, fructose, Polycose, saccharin, sucralose, AceK, SC45647, or a nonmetabolizable sugar analog. The only taste stimuli that elicited CPIR were glucose and the glucose-containing saccharides (sucrose, maltose, Polycose). When we mixed an α-glucosidase inhibitor (acarbose) with the latter three saccharides, the mice no longer exhibited CPIR. This revealed that the carbohydrates were hydrolyzed in the mouth, and that the liberated glucose triggered CPIR. We also found that increasing the intensity or duration of oral glucose stimulation caused a corresponding increase in CPIR magnitude. To identify the components of the glucose-specific taste-signaling pathway, we examined the necessity of Calhm1, P2X2+P2X3, SGLT1, and Sur1. Among these proteins, only Sur1 was necessary for CPIR. Sur1 was not necessary, however, for taste-mediated attraction to sugars. Given that Sur1 is a subunit of the ATP-sensitive K+ channel (KATP) channel and that this channel functions as a part of a glucose-sensing pathway in pancreatic ß-cells, we asked whether the KATP channel serves an analogous role in taste cells. We discovered that oral stimulation with drugs known to increase (glyburide) or decrease (diazoxide) KATP signaling produced corresponding changes in glucose-stimulated CPIR. We propose that the KATP channel is part of a novel signaling pathway in taste cells that mediates glucose-induced CPIR.


Subject(s)
Glucose/administration & dosage , Insulin/metabolism , Ion Channel Gating/physiology , KATP Channels/metabolism , Taste Buds/drug effects , Taste Buds/physiology , Administration, Oral , Animals , Female , Insulin/blood , Insulin Secretion , Mice , Mice, Inbred C57BL , Taste Buds/cytology
16.
Neurobiol Dis ; 85: 11-24, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26459114

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a chronic and progressive neuromuscular disease for which no cure exists and better treatment options are desperately needed. We hypothesize that currently approved ß2-adrenoceptor agonists may effectively treat the symptoms and possibly slow the progression of ALS. Although ß2-agonists are primarily used to treat asthma, pharmacologic data from animal models of neuromuscular diseases suggest that these agents may have pharmacologic effects of benefit in treating ALS. These include inhibiting protein degradation, stimulating protein synthesis, inducing neurotrophic factor synthesis and release, positively modulating microglial and systemic immune function, maintaining the structural and functional integrity of motor endplates, and improving energy metabolism. Moreover, stimulation of ß2-adrenoceptors can activate a range of downstream signaling events in many different cell types that could account for the diverse array of effects of these agents. The evidence supporting the possible therapeutic benefits of ß2-agonists is briefly reviewed, followed by a more detailed review of clinical trials testing the efficacy of ß-agonists in a variety of human neuromuscular maladies. The weight of evidence of the potential benefits from treating these diseases supports the hypothesis that ß2-agonists may be efficacious in ALS. Finally, ways to monitor and manage the side effects that may arise with chronic administration of ß2-agonists are evaluated. In sum, effective, safe and orally-active ß2-agonists may provide a novel and convenient means to reduce the symptoms of ALS and possibly delay disease progression, affording a unique opportunity to repurpose these approved drugs for treating ALS, and rapidly transforming the management of this serious, unmet medical need.


Subject(s)
Adrenergic beta-2 Receptor Agonists/administration & dosage , Amyotrophic Lateral Sclerosis/drug therapy , Neuroprotective Agents/administration & dosage , Administration, Oral , Adrenergic beta-2 Receptor Agonists/adverse effects , Amyotrophic Lateral Sclerosis/metabolism , Animals , Humans , Neuroprotective Agents/adverse effects
17.
Clin Ophthalmol ; 9: 323-35, 2015.
Article in English | MEDLINE | ID: mdl-25733800

ABSTRACT

OBJECTIVE: Population pharmacokinetic modeling of pegaptanib was undertaken to determine influence of renal function on apparent clearance. METHODS: In a randomized, double-masked multicenter trial, intravitreal pegaptanib (0.3, 1.0, or 3.0 mg/eye) was administered in patients with diabetic macular edema every 6 weeks for 12-30 weeks. A one-compartment model with first-order absorption, distribution volume, and clearance was used to characterize the pegaptanib plasma concentration-time profile. RESULTS: In 58 patients, increases in area under the concentration-time curve (AUC) to end of the dosing interval (AUC0-tau) and maximum concentration with repeat doses were <6%, indicating minimal plasma accumulation. Sex and race did not have clinically significant effects on pegaptanib exposure. In the final model, the AUC extrapolated to infinite time and maximum concentration increased by ≥50% in older patients (aged >68 years) relative to younger patients due to decreases in creatinine clearance (CRCL), a significant predictor of clearance. Pegaptanib clearance was reduced by 29% when CRCL decreased by 50%. The change in exposure with CRCL (range, 0-190 mL/minute) was < 10-fold with 0.3-3.0 mg doses. CONCLUSION: While pegaptanib clearance and AUC were significantly influenced by CRCL, the predicted exposure in patients with renal insufficiency or renal failure shows no evidence that a dose adjustment is warranted, given the tenfold margin of safety observed over the dose range of 0.3-3.0 mg.

18.
Int J Clin Pharmacol Ther ; 52(7): 574-86, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24755127

ABSTRACT

OBJECTIVE: To rapidly identify patients who will ultimately respond to 1 year of therapy, and optimize their inter dose interval. MATERIALS AND METHODS: An intravitreal (IVT) ophthalmic dosing paradigm was designed based on clinical efficacy, nonclinical pharmacokinetics (PK), and disease progression modeling. Relevant non-clinical PK models were used to extrapolate IVT drug concentrations to patients. RESULTS: Modeling predicted that > 80% of patients who would respond to 1 year of IVT treatment with an improvement in best-corrected visual acuity (BCVA) could be identified after the first 2 doses of treatment. These 2 initial doses produced ~ 75% of the maximum improvement in BCVA attainable. Moreover, the models also predicted those patients who responded after 1 year of treatment may tolerate an extension of the inter dose interval to 12 weeks without significant deterioration of BCVA. In contrast, > 70% of responsive patients who did not respond to 1 year of treatment showed inadequate responses after 2 doses. CONCLUSIONS: These models use data from 2 doses to identify those patients likely to benefit after 1 year of treatment, and thereafter can lengthen their inter dose interval without deleterious effects. This method identifies potential treatment responders early, and lengthens the inter dose interval during long-term administration while allowing non-responders to pursue alternative therapies earlier, thereby minimizing risk to the patient.


Subject(s)
Aptamers, Nucleotide/administration & dosage , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Aptamers, Nucleotide/adverse effects , Aptamers, Nucleotide/pharmacokinetics , Disease Progression , Humans , Intravitreal Injections , Models, Biological , Visual Acuity/drug effects
19.
Invest Ophthalmol Vis Sci ; 55(3): 1232-40, 2014 Mar 04.
Article in English | MEDLINE | ID: mdl-24458146

ABSTRACT

PURPOSE: The intraocular pharmacodynamics of PF-04523655, a small-interfering RNA (siRNA) directed against RTP801, was characterized using rat models of retinopathy. METHODS: Rat models of streptozotocin-induced diabetes and wet AMD were used to determine the onset, extent, and duration of siRNA inhibition of retinal RTP801 expression by PF-04523655, and this inhibition was characterized by pharmacokinetic/pharmacodynamic (PK/PD) modeling. A rat model of wet AMD was also used to examine PF-04523655 dose-dependent effects on the incidence of clinical grade 3 or 4 choroidal neovascularization lesions. Whole homogenate versus laser-capture microdissected (LCM) retinal samples were analyzed by quantitative PCR for RTP801 expression. RESULTS: RTP801 expression in RPE/choroid (RPE/C) increased in diabetic rats by up to 70% above nondiabetic rat levels. Inhibition of retinal RTP801 expression by PF-04523655 began 1 day after intravitreous injection and was observed through day 7 in the neurosensory retina and through day 14 or longer in RPE/C. PF-04523655 inhibition of RTP801 expression was maintained well after clearance of PF-04523655 from the eye and was best characterized by an effect compartment PK/PD model. Moreover, PF-04523655 administration decreased the incidence of clinical grade 3 or 4 lesions by approximately 60% (P = 0.053), and dose-dependently inhibited retinal RTP801 expression (P < 0.01). RTP801 expression was enriched in the outer nuclear layer in LCM samples. CONCLUSIONS: In rodent retinopathy models, administration of the siRNA, PF-04523655, reduced RTP801 expression in the retina, consistent with the RNA-induced silencing complex (RISC) mechanism of action. The pharmacodynamic profile from the animal models could be useful to elucidate dose and exposure dependency of RTP801 expression inhibition by siRNA.


Subject(s)
Diabetic Retinopathy/genetics , RNA, Messenger/genetics , RNA, Small Interfering/pharmacology , Repressor Proteins/genetics , Up-Regulation/drug effects , Animals , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/metabolism , Disease Models, Animal , Polymerase Chain Reaction , RNA, Small Interfering/pharmacokinetics , Rats , Rats, Long-Evans , Repressor Proteins/biosynthesis , Repressor Proteins/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Transcription Factors
20.
Mol Pharm ; 10(2): 650-63, 2013 Feb 04.
Article in English | MEDLINE | ID: mdl-23268600

ABSTRACT

The barrier epithelia of the cornea and retina control drug and nutrient access to various compartments of the human eye. While ocular transporters are likely to play a critical role in homeostasis and drug delivery, little is known about their expression, localization and function. In this study, the mRNA expression levels of 445 transporters, metabolic enzymes, transcription factors and nuclear receptors were profiled in five regions of the human eye: cornea, iris, ciliary body, choroid and retina. Through RNA expression profiling and immunohistochemistry, several transporters were identified as putative targets for drug transport in ocular tissues. Our analysis identified SLC22A7 (OAT2), a carrier for the antiviral drug acyclovir, in the corneal epithelium, in addition to ABCG2 (BCRP), an important xenobiotic efflux pump, in retinal nerve fibers and the retinal pigment epithelium. Collectively, our results provide an understanding of the transporters that serve to maintain ocular homeostasis and which may be potential targets for drug delivery to deep compartments of the eye.


Subject(s)
Eye/metabolism , Gene Expression Profiling/methods , Organic Anion Transporters, ATP-Dependent/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Acyclovir/metabolism , Cornea/metabolism , Humans , Immunohistochemistry , In Vitro Techniques , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Organic Anion Transporters, ATP-Dependent/genetics , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Real-Time Polymerase Chain Reaction , Retina/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...