Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 22(1): 343, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35836131

ABSTRACT

BACKGROUND: Mung bean is a short-duration and essential food crop owing to its cash prominence in Asia. Mung bean seeds are rich in protein, fiber, antioxidants, and phytonutrients. The NAC transcription factors (TFs) family is a large plant-specific family, participating in tissue development regulation and abiotic and biotic stresses. RESULTS: In this study, we perform genome-wide comparisons of VrNAC with their homologs from Arabidopsis. We identified 81 NAC transcription factors (TFs) in mung bean genome and named as per their chromosome location. A phylogenetic analysis revealed that VrNACs are broadly distributed in nine groups. Moreover, we identified 20 conserved motifs across the VrNACs highlighting their roles in different biological process. Based on the gene structure of the putative VrNAC and segmental duplication events might be playing a vital role in the expansion of mung bean genome. A comparative phylogenetic analysis of mung bean NAC together with homologs from Arabidopsis allowed us to classify NAC genes into 13 groups, each containing several orthologs and paralogs. Gene ontology (GO) analysis categorized the VrNACs into biological process, cellular components and molecular functions, explaining the functions in different plant physiology processes. A gene co-expression network analysis identified 173 genes involved in the transcriptional network of putative VrNAC genes. We also investigated how miRNAs potentially target VrNACs and shape their interactions with proteins. VrNAC1.4 (Vradi01g03390.1) was targeted by the Vra-miR165 family, including 9 miRNAs. Vra-miR165 contributes to leaf development and drought tolerance. We also performed qRT-PCR on 22 randomly selected VrNAC genes to assess their expression patterns in the NM-98 genotype, widely known for being tolerant to drought and bacterial leaf spot disease. CONCLUSIONS: This genome-wide investigation of VrNACs provides a unique resource for further detailed investigations aimed at predicting orthologs functions and what role the play under abiotic and biotic stress, with the ultimate aim to improve mung bean production under diverse environmental conditions.


Subject(s)
Arabidopsis , Fabaceae , MicroRNAs , Vigna , Arabidopsis/genetics , Fabaceae/genetics , Fabaceae/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome-Wide Association Study , Multigene Family , Phylogeny , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism , Vigna/genetics , Vigna/metabolism
2.
Genomics ; 113(4): 2455-2467, 2021 07.
Article in English | MEDLINE | ID: mdl-34052318

ABSTRACT

Clavibacter michiganensis subsp. michiganensis (Cmm) is a gram-positive bacterium causing destructive bacterial wilt and canker disease in tomato. Herein, a comparative transcriptome analysis was performed on Cmm-resistant and -susceptible tomato lines. Tomato seedlings were inoculated with Cmm and harvested for transcriptome analysis after 4 and 8 day time-points. Twenty-four transcriptome libraries were profiled by RNA sequencing approach. Total of 545 million clean reads was generated. 1642 and 2715 differentially expressed genes (DEG) were identified in susceptible lines within 4 and 8 days after inoculation (DAI), respectively. In resistant lines, 1731 and 1281 DEGs were found following 4 and 8 DAI, respectively. Gene Ontology analysis resulted in a higher number of genes involved in biological processes and molecular functions in susceptible lines. On the other hand, such biological processes, "defense response", and "response to stress" were distinctly indicated in resistant lines which were not found in susceptible ones upon inoculation, according to the gene set enrichment analyses. Upon Cmm-inoculation, several defense responsive genes were found to be differentially expressed. Of which 26 genes were in the resistant line and three were in the susceptible line. This study helps to understand the transcriptome response of Cmm-resistant and -susceptible tomato lines. The results provide comprehensive data for molecular breeding studies, for the purpose to control of the pathogen in tomato.


Subject(s)
Solanum lycopersicum , Clavibacter , Gene Expression Profiling , Solanum lycopersicum/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Transcriptome
3.
Appl Environ Microbiol ; 71(12): 8284-91, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16332814

ABSTRACT

We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.


Subject(s)
Chromosomes, Bacterial , Copper/pharmacology , Drug Resistance, Bacterial/genetics , Multigene Family , Xanthomonas campestris/genetics , Base Sequence , Blotting, Southern , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Electrophoresis, Gel, Pulsed-Field , Escherichia coli/genetics , Genes, Bacterial , Molecular Sequence Data , Plasmids/genetics , Polymerase Chain Reaction , Restriction Mapping , Sequence Alignment , Sequence Homology, Nucleic Acid , Xanthomonas campestris/drug effects , Xanthomonas campestris/growth & development , Xanthomonas campestris/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...