Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Genet ; 92(4): 423-429, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28139846

ABSTRACT

SATB2-associated syndrome (SAS) is a multisystemic disorder caused by alterations of the SATB2 gene. We describe the phenotype and genotype of 12 individuals with 10 unique (de novo in 11 of 11 tested) pathogenic variants (1 splice site, 5 frameshift, 3 nonsense, and 2 missense) in SATB2 and review all cases reported in the published literature caused by point alterations thus far. In the cohort here described, developmental delay (DD) with severe speech compromise, facial dysmorphism, and dental anomalies were present in all cases. We also present the third case of tibial bowing in an individual who, just as in the previous 2 individuals in the literature, also had a truncating pathogenic variant of SATB2. We explore early genotype-phenotype correlations and reaffirm the main clinical features of this recognizable syndrome: universal DD with severe speech impediment, mild facial dysmorphism, and high frequency of craniofacial anomalies, behavioral issues, and brain neuroradiographic changes. As the recently proposed surveillance guidelines for individuals with SAS are adopted by providers, further delineation of the frequency and impact of other phenotypic traits will become available. Similarly, as new cases of SAS are identified, further exploration of genotype-phenotype correlations will be possible.


Subject(s)
Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Matrix Attachment Region Binding Proteins/genetics , Transcription Factors/genetics , Adolescent , Child , Child, Preschool , Craniofacial Abnormalities/physiopathology , Developmental Disabilities/physiopathology , Exome/genetics , Female , Frameshift Mutation , Genetic Association Studies , Genetic Predisposition to Disease , Genotype , Humans , Infant , Intellectual Disability/physiopathology , Male , Phenotype
2.
Am J Physiol Endocrinol Metab ; 280(3): E540-7, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11171611

ABSTRACT

Our objective was to examine very low density lipoprotein-triglyceride (VLDL-TG) kinetics after chronic and acute administration of nicotinic acid (NA). Incorporation of [1,2,3,4-(13)C(4)]palmitate and [2-(13)C(1)]glycerol into VLDL-TG was measured in five healthy, normolipidemic women. Each subject was studied twice; the 4-day hospital stays were separated by 1 mo, during which time doses of NA were increased to 2 g/day (500 mg, 4 times/day). During posttreatment study, 500 mg of NA were administered acutely at 0800. Under baseline postabsorptive conditions, incorporation curves from (13)C-labeled free fatty acid (FFA) and (13)C-labeled glycerol were superimposable, and VLDL-TG kinetics were in agreement (t(1/2) = 1.4 +/- 0.3 and 1.3 +/- 0.3 h, and production rates = 27.2 +/- 6.1 and 28.5 +/- 5.3 g/day, respectively). In the postabsorptive state after chronic NA therapy, VLDL-TG concentrations and production rates were lower despite a trend toward elevated plasma FFA concentrations and fluxes. After the acute dose of NA, plasma FFA concentrations and flux fell dramatically, and there was a virtual halt to VLDL-TG production, which continued throughout the 6-h period after NA, despite a marked rebound overshoot in serum FFA concentrations and flux after hour 2. Plasma homocysteine concentrations increased 68% (P < 0.001) in the NA phase, consistent with chronic increased transmethylation demand. We conclude that 1) NA acutely and chronically decreases VLDL-TG production rate in normal women; 2) the acute effect on VLDL-TG production is associated with an initial suppression of lipolysis but persists for several hours after the antilipolytic action of NA has abated and is observed in the basal postabsorptive state, when lipolytic rates are not reduced; and 3) the effect of NA on VLDL-TG production, therefore, cannot be completely explained by its antilipolytic actions.


Subject(s)
Lipoproteins, VLDL/biosynthesis , Liver/drug effects , Liver/metabolism , Niacin/pharmacology , Triglycerides/biosynthesis , Adult , Blood Glucose/metabolism , Carbon Isotopes , Cholesterol/blood , Cholesterol, LDL/blood , Fasting , Fatty Acids, Nonesterified/blood , Female , Glycerol/metabolism , Humans , Kinetics , Lipolysis , Niacin/administration & dosage , Palmitic Acid/metabolism , Triglycerides/blood
3.
Am J Physiol Endocrinol Metab ; 279(1): E50-9, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10893322

ABSTRACT

Chronic nicotinic acid (NA) ingestion effectively lowers lipid levels, but adverse effects on glucose metabolism have been reported. Our goal was to investigate acute and chronic effects of NA on lipolysis and glucose metabolism in women. Healthy normolipidemic volunteers (n = 5) were studied twice; four-day hospital stays were separated by 1 mo, during which time subjects took increasing doses of NA to 2 g/day (500 mg, 4 times). In the second study, 500 mg of NA was given at 0800. Rates of appearance (R(a)) of free fatty acid (FFA), glycerol, and glucose were determined by isotope dilution (of [1,2,3,4-(13)C(4)]palmitate, [2-(13)C(1)]glycerol, and [U-(13)C(6)]glucose). Mass isotopomer distribution analysis was used to measure gluconeogenesis and glycogenolysis. Fasting FFA concentrations ([FFA]), R(a) FFA, and R(a) glycerol were nonsignificantly elevated after 1 mo. Acute NA induced a significant reduction followed by a rebound overshoot of [FFA], R(a) FFA, and R(a) glycerol. Whole body fat oxidation fell initially and then increased back to basal levels; endogenous glucose production (EGP) increased in parallel with carbohydrate oxidation and then returned to basal values. The increased EGP was due entirely to increased glycogenolysis, not gluconeogenesis. We conclude that chronic effects of NA on FFA metabolism are complex (acute suppression followed by overshoot of R(a) FFA and [FFA] on top of a trend toward basal elevations), that responses after NA are consistent with operation of a glucose-fatty acid cycle in peripheral tissues, and that secondary effects on EGP were through changes in glycogenolysis, not gluconeogenesis.


Subject(s)
Energy Metabolism/drug effects , Fatty Acids/metabolism , Glucose/biosynthesis , Niacin/pharmacology , Adult , Blood Glucose/analysis , Fatty Acids, Nonesterified/blood , Female , Gluconeogenesis , Glycogen/metabolism , Humans , Insulin/blood , Kinetics , Lipolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...