Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36143521

ABSTRACT

We investigated the production conditions and optoelectrical properties of thin film material consisting of regularly ordered core/shell Ge/Al and Ge/Si3N4/Al quantum dots (QDs) in an alumina matrix. The materials were produced by self-assembled growth achieved by means of multilayer magnetron sputtering deposition. We demonstrated the successful fabrication of well-ordered 3D lattices of Ge/Al and Ge/Si3N4/Al core/shell quantum dots with a body-centred tetragonal arrangement within the Al2O3 matrix. The addition of shells to the Ge core enables a strong tuning of the optical and electrical properties of the material. An Al shell induces a bandgap shift toward smaller energies, and, in addition, it prevents Ge oxidation. The addition of a thin Si3N4 shell induces huge changes in the material spectral response, i.e., in the number of extracted excitons produced by a single photon. It increases both the absolute value and the width of the spectral response. For the best sample, we achieved an enhancement of over 250% of the produced number of excitons in the measured energy range. The observed changes are, as it seems, the consequence of the large tensile strain in Ge QDs which is induced by the Si3N4 shell addition and which is measured to be about 3% for the most strained QDs. The tensile strain causes activation of the direct bandgap of germanium, which has a very strong effect on the spectral response of the material.

2.
Nanomaterials (Basel) ; 10(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668659

ABSTRACT

Recently demonstrated 3D networks of Ge quantum wires in an alumina matrix, produced by a simple magnetron sputtering deposition enables the realization of nanodevices with tailored conductivity and opto-electrical properties. Their growth and ordering mechanisms as well as possibilities in the design of their structure have not been explored yet. Here, we investigate a broad range of deposition conditions leading to the formation of such quantum wire networks. The resulting structures show an extraordinary tenability of the networks' geometrical properties. These properties are easily controllable by deposition temperature and Ge concentration. The network's geometry is shown to retain the same basic structure, adjusting its parameters according to Ge concentration in the material. In addition, the networks' growth and ordering mechanisms are explained. Furthermore, optical measurements demonstrate that the presented networks show strong confinement effects controllable by their geometrical parameters. Interestingly, energy shift is the largest for the longest quantum wires, and quantum wire length is the main parameter for control of confinement. Presented results demonstrate a method to produce unique materials with designable properties by a simple self-assembled growth method and reveal a self-assembling growth mechanism of novel 3D ordered Ge nanostructures with highly designable optical properties.

3.
Materials (Basel) ; 13(13)2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32604995

ABSTRACT

Self-supporting thin films containing nanopores are very promising materials for use for multiple applications, especially in nanofiltration. Here, we present a method for the production of nanomembranes containing a 3D ordered network of nanopores in an alumina matrix, with a diameter of about 1 nm and a body centered tetragonal structure of the network nodes. The material is produced by the magnetron sputtering deposition of a 3D ordered network of Ge nanowires in an alumina matrix, followed by a specific annealing process resulting in the evaporation of Ge. We demonstrate that the films can be easily grown on commercially available alumina substrates containing larger pores with diameters between 20 and 400 nm. We have determined the minimal film thickness needed to entirely cover the larger pores. We believe that these films have the potential for applications in the fields of filtration, separation and sensing.

4.
Sci Rep ; 10(1): 65, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31919380

ABSTRACT

The absorption spectra in array of Ge, Al and Ge/Al-shell nanoparticles immersed in alumina (Al2O3) matrix is calculated in framework of ab initio macroscopic dielectric model. It is demonstrated that absorption is strongly enhanced when germanium nanospheres are encapsulated by Al-shell. Two absorption peaks, appearing in the spectra, correspond to low energy ω+ and high energy ω- plasmons which lie in visible and ultraviolet frequency range, respectively. It is demonstrated that in Ge/Al-shell composite the ω+ plasmon exists only because quantum confinement effect which provides larger Ge band gap (Δ ~ 1.5 eV) and thus prevent decay of ω+ plasmon to continuum of interband electron-hole excitation in semiconducting core. Absorption in visible frequency range enhances additional 3 times when alumina is replaced by large dielectric constant insulator, such as SiC, and additional 6 times when Ge core is replaced by wide band-gap insulator, such as Si3N4. Strong enhancement of optical absorption in visible frequency range make this composites suitable for optoelectronic application, such as solar cells or light emitting devices. The simulated plasmon peaks are brought in connection with peaks appearing in ellipsometry measurements.

5.
Sci Rep ; 9(1): 5432, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30932001

ABSTRACT

We demonstrate formation of material consisting of three-dimensional Germanium nanowire network embedded in an insulating alumina matrix. A wide range of such nanowire networks is produced using a simple magnetron sputtering deposition process. We are able to vary the network parameters including its geometry as well as the length and width of the nanowires. The charge transport in these materials is shown to be related to the nanowire surface per unit volume of the material, α. For low values of α, transport is characterized by space charge limited conduction and a drift of carriers in the extended states with intermittent trapping-detrapping in the localized states. For large values of α, charge transport occurs through hopping between localized electronic states, similar to observations in disorder-dominated arrays of quantum dots. A crossover between these two mechanisms is observed for the intermediate values of α. Our results are understood in terms of an almost linear scaling of the characteristic trap energy with changes in the nanowire network parameters.

6.
Nanotechnology ; 30(33): 335601, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31026849

ABSTRACT

The preparation of non-oxidized Ge quantum dot (QD) lattices embedded in Al2O3, Si3N4, SiC matrices by self-assembled growth was studied. The materials were produced by magnetron sputtering deposition, using different substrate temperatures. The deposition regimes leading to the self-assembled growth type and the formation of three-dimensionally ordered Ge QD lattices in different matrices were investigated and determined. The oxidation of the Ge QDs in different matrices was monitored and the best conditions for the production of non-oxidized Ge QDs were found. The optical properties of the Ge QD lattices in different matrices show a strong dependence on the Ge oxidation and the matrix type.

SELECTION OF CITATIONS
SEARCH DETAIL
...