Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroscience ; 450: 184-191, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32512136

ABSTRACT

In 2013, Thomas Jessell published a paper with Andrew Miri and Eiman Azim that took on the task of examining corticospinal neuron function during movement (Miri et al., 2013). They took the view that a combination of approaches would be able to shed light on corticospinal function, and that this function must be considered in the context of corticospinal connectivity with spinal circuits. In this review, we will highlight recent developments in this area, along with new information regarding inputs and cross-connectivity of the corticospinal circuit with other circuits across the rodent central nervous system. The genetic and viral manipulations available in these animals have led to new insights into descending circuit interaction and function. As species differences exist in the circuitry profile that contributes to dexterous forelimb movements (Lemon, 2008; Yoshida and Isa, 2018), highlighting important advances in one model could help to compare and contrast with what is known about other models. We will focus on the circuitry underpinning dexterous forelimb movements, including some recent developments from systems besides the corticospinal tract, to build a more holistic understanding of sensorimotor circuits and their control of voluntary movement. The rodent corticospinal system is thus a central point of reference in this review, but not the only focus.


Subject(s)
Motor Cortex , Pyramidal Tracts , Animals , Forelimb , Movement , Rodentia
2.
J Neurosci ; 34(50): 16821-34, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25505334

ABSTRACT

How the brain coordinates rapid sequences of learned behavior, such as human speech, remains a fundamental problem in neuroscience. Birdsong is a model of such behavior, which is learned and controlled by a neural circuit that spans avian cortex, basal ganglia, and thalamus. The songs of adult male zebra finches (Taeniopygia guttata), produced as rapid sequences of vocal gestures (syllables), are encoded by the cortical premotor region HVC (proper name). While the motor encoding of song within HVC has traditionally been viewed as unitary and distributed, we used an ablation technique to ask whether the sequence and structure of song are processed independently within HVC. Results revealed a functional topography across the medial-lateral axis of HVC. Bilateral ablation of medial HVC induced a positive disruption of song (increase in atypical syllable sequences), whereas bilateral ablation of lateral HVC induced a negative disruption (omission of individual syllables). Bilateral ablation of central HVC either had no effect on song or induced syllable omission, similar to lateral HVC ablation. We then investigated HVC connectivity and found parallel afferent and efferent pathways that transit medial and lateral HVC and converge at vocal motor cortex. In light of recent evidence that syntactic and lexical components of human speech are processed independently by neighboring regions of cortex (Menenti et al., 2012), our demonstration of anatomically distinct pathways that differentially process the sequence and structure of birdsong in parallel suggests that the vertebrate brain relies on a common approach to encode rapid sequences of vocal gestures.


Subject(s)
Finches/physiology , High Vocal Center/physiology , Motor Cortex/physiology , Nerve Net/physiology , Vocalization, Animal/physiology , Animals , Male , Songbirds
3.
J Neurosci ; 32(27): 9312-22, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22764238

ABSTRACT

Neural activity within HVC (proper name), a premotor nucleus of the songbird telencephalon analogous to premotor cortical regions in mammals, controls the temporal structure of learned song in male zebra finches (Taeniopygia guttata). HVC is composed of a superficially isomorphic neuronal mosaic, implying that song is encoded in a distributed network within HVC. Here, we combined HVC microlesions (10% focal ablation) with singing-driven immediate-early gene (IEG) labeling to explore the network architecture of HVC during singing. Microlesions produce a transient disruption of HVC activity that results in a temporary (≈ 1 week) loss of vocal patterning. Results showed an asymmetrical reduction in the density of IEG-labeled cells 3-5 d after microlesions: swaths of unlabeled cells extended rostrally and/or caudally depending on the position of the HVC microlesion. Labeling returned once birds recovered their songs. Axial swaths of unlabeled cells occurred whether microlesions were located at rostral or caudal poles of HVC, indicating that the localized reduction in IEG labeling could not be attributable solely to transection of afferents that enter HVC rostrally. The asymmetrical pattern of reduced IEG labeling could be explained if synaptic connectivity within HVC is organized preferentially within the rostrocaudal axis. In vivo retrograde tracer injections and in vitro stimulation and recording experiments in horizontal slices of HVC confirmed a rostrocaudal organization of HVC neural connectivity. Our findings suggest that HVC contains an axially organized network architecture that may encode the temporal structure of song.


Subject(s)
Finches/physiology , High Vocal Center/physiology , Learning/physiology , Telencephalon/anatomy & histology , Telencephalon/physiology , Animals , Brain Damage, Chronic/pathology , Brain Damage, Chronic/physiopathology , Denervation/methods , Electrophysiology , Finches/anatomy & histology , High Vocal Center/anatomy & histology , High Vocal Center/injuries , Male , Organ Culture Techniques , Vocalization, Animal/physiology
4.
J Neurosci ; 31(1): 322-30, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21209218

ABSTRACT

Many forms of learning, including songbird vocal learning, rely on the brain's ability to use pre-motor variation and sensory feedback to guide behavior toward a specific target or goal. In the vocal control system of zebra finches (Taeniopygia guttata) the pre-motor mechanisms of vocal variation are thought to be vested primarily in a neural pathway that includes the basal ganglia. A second circuit that includes avian analogues of mammalian pre-motor and motor cortex (the vocal motor pathway) generates the patterned structure of learned adult song. Here, we tested the ability of the basal ganglia pathway to generate pre-motor vocal variation within the spectral and temporal dimensions of zebra finch song structure. In adult birds, ablation of the basal ganglia pathway significantly reduced the spectral and temporal dispersion of individual song syllables, with the exception of syllable pitch, where the reduction was not statistically significant when compared against surgical controls. We found a similar pattern of results using longitudinal comparisons (juvenile vs adult) to isolate the contribution of the basal ganglia pathway to spectral dispersion in populations of developing song syllables--variation in syllable pitch was significantly smaller than in all other measured spectral features. The results indicate that pre-motor variation generated by the basal ganglia pathway may be sufficient to adjust vocal output toward highly acoustically dispersed targets of imitation, but suggest that complete acquisition of the pronounced variation in syllable pitch that characterizes adult song will necessitate a gradual developmental interaction between the basal ganglia and vocal motor pathways.


Subject(s)
Auditory Pathways/physiology , Auditory Perception/physiology , Basal Ganglia/physiology , Learning/physiology , Vocalization, Animal/physiology , Acoustic Stimulation/methods , Age Factors , Analysis of Variance , Animals , Basal Ganglia/injuries , Behavior, Animal , Finches , Male , Prosencephalon/physiology , Psychoacoustics , Random Allocation , Spectrum Analysis , Statistics, Nonparametric
SELECTION OF CITATIONS
SEARCH DETAIL
...