Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Anim ; 58(6): 452-461, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35713773

ABSTRACT

Adipocyte accumulation in the bone marrow is a severe complication leading to bone defects and reduced regenerative capacity. Application of external mechanical signals to bone marrow cellular niche is a non-invasive and non-pharmaceutical methodology to improve osteogenesis and suppress adipogenesis. However, in the literature, the specific parameters related to the nature of low-intensity vibratory (LIV) signals appear to be arbitrarily selected for amplitude, bouts, and applied frequency. In this study, we performed a LIV frequency sweep ranging from 30 to 120 Hz with increments of 15 Hz applied onto preadipocytes during adipogenesis for 10 d. We addressed the effect of LIV with different frequencies on single-cell density, adipogenic gene expression, lipid morphology, and triglycerides content. Results showed that LIV signals with 75-Hz frequency had the most significant suppressive effect during adipogenesis. Our results support the premise that mechanical-based interventions for suppressing adipogenesis may benefit from optimizing input parameters.


Subject(s)
Adipocytes , Adipogenesis , 3T3-L1 Cells , Adipogenesis/genetics , Animals , Bone Marrow Cells , Cell Differentiation , Mice , Osteogenesis
2.
Curr Stem Cell Res Ther ; 15(5): 391-399, 2020.
Article in English | MEDLINE | ID: mdl-31830894

ABSTRACT

Persistent and transient mechanical loads can act as biological signals on all levels of an organism. It is therefore not surprising that most cell types can sense and respond to mechanical loads, similar to their interaction with biochemical and electrical signals. The presence or absence of mechanical forces can be an important determinant of form, function and health of many tissue types. Along with naturally occurring mechanical loads, it is possible to manipulate and apply external physical loads on tissues in biomedical sciences, either for prevention or treatment of catabolism related to many factors, including aging, paralysis, sedentary lifestyles and spaceflight. Mechanical loads consist of many components in their applied signal form such as magnitude, frequency, duration and intervals. Even though high magnitude mechanical loads with low frequencies (e.g. running or weight lifting) induce anabolism in musculoskeletal tissues, their applicability as anabolic agents is limited because of the required compliance and physical health of the target population. On the other hand, it is possible to use low magnitude and high frequency (e.g. in a vibratory form) mechanical loads for anabolism as well. Cells, including stem cells of the musculoskeletal tissue, are sensitive to high frequency, lowintensity mechanical signals. This sensitivity can be utilized not only for the targeted treatment of tissues, but also for stem cell expansion, differentiation and biomaterial interaction in tissue engineering applications. In this review, we reported recent advances in the application of low-intensity vibrations on stem and progenitor cell populations. Modulation of cellular behavior with low-intensity vibrations as an alternative or complementary factor to biochemical and scaffold induced signals may represent an increase of capabilities in studies related to tissue engineering.


Subject(s)
Stem Cells/cytology , Vibration , Animals , Biomechanical Phenomena , Cell Culture Techniques , Humans , Periodontal Ligament/cytology
4.
Proc Inst Mech Eng H ; 231(2): 160-168, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28068880

ABSTRACT

Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.


Subject(s)
Adipogenesis/physiology , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipogenesis/genetics , Animals , Biomechanical Phenomena , Cell Line , Cell Survival , Gene Expression , Mice , Osteogenesis , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL
...