Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Altern Med ; 17(1): 40, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28086773

ABSTRACT

BACKGROUND: Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H2O2)-induced inflammation on RAW 264.7 macrophages was investigated. METHOD: The effect of EPG on nitric oxide (NO) production as an indicator of inflammation in RAW 264.7 macrophages was estimated based on Griess reaction that measures nitrite level. The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), NF-kB activating protein (NKAP), signal transducer and activator of transcription 3 protein (STAT 3) and glutathione peroxidase (GPx) genes were assessed using real time reverse transcription polymerase chain reaction (RT-PCR) approach. RESULTS: EPG (10 µg/ml) showed the highest reduction in the LPS-induced NO production in RAW 264.7 macrophages and significantly suppressed (p < 0.05) the expression iNOS, STAT 3 and COX-2. There was a significant increase (p < 0.05) in combination of LPS and H2O2- induced iNOS production when compared to the LPS-induced iNOS production in RAW 264.7 macrophages and this concurred with the NO production which was attenuated by EPG at 10 µg/ml. A significant (p < 0.05) down regulation was observed in the combination of LPS and H2O2-induced iNOS and GPx expression by EPG. CONCLUSIONS: Our data suggest that the anti-inflammatory activity of EPG is mediated via the suppression of the STAT 3 and COX-2 pathways and can serve as potential endogenous antioxidant stimulant.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Biological Factors/pharmacology , Cyclooxygenase 2/metabolism , Macrophages/drug effects , Nitric Oxide/metabolism , Pleurotus/chemistry , STAT3 Transcription Factor/metabolism , Animals , Cyclooxygenase 2/genetics , Hydrogen Peroxide/toxicity , Lipopolysaccharides/adverse effects , Macrophages/metabolism , Mice , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects
2.
Front Pharmacol ; 8: 998, 2017.
Article in English | MEDLINE | ID: mdl-29379443

ABSTRACT

Edible and medicinal mushrooms are regularly used in natural medicines and home remedies since antiquity for ailments like fever, inflammation, and respiratory disorders. Lignosus rhinocerotis (Cooke) Ryvarden is a polypore found in Malaysia and other regions in South East Asia. It can be located on a spot where a tigress drips milk while feeding, hence the name "tiger's milk mushroom." The sclerotium of L. rhinocerotis is highly sought after by the native communities in Malaysia to stave off hunger, relieve cough and asthma, and provide stamina. The genomic features of L. rhinocerotis have been described. The pharmacological and toxicity effects, if any, of L. rhinocerotis sclerotium have been scientifically verified in recent years. In this review, the validated investigations including the cognitive function, neuroprotection, immune modulation, anti-asthmatic, anti-coagulation, anti-inflammatory, anti-microbial/ anti-viral, anti-obesity, anti-cancer/ anti-tumor, and antioxidant properties are highlighted. These findings suggest that L. rhinocerotis can be considered as an alternative and natural medicine in the management of non-communicable diseases. However, there is a paucity of validation studies including human clinical trials of the mycochemicals of L. rhinocerotis.

3.
J Food Sci Technol ; 52(5): 3058-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25892809

ABSTRACT

Nutritional value of cooked food has been considered to be lower compared to the fresh produce. However, many reports showed that processed fruits and vegetables including mushrooms may retain antioxidant activity. Pleurotus spp. as one of the edible mushroom are in great demand globally and become one of the most popular mushrooms grown worldwide with 25-fold increase in production from 1960-2009. The effects of three different cooking methods (boiling, microwave and pressure cooking) on the antioxidant activities of six different types of oyster mushrooms (Pleurotus eryngii, P citrinopileatus, P. cystidiosus P. flabellatus, P. floridanus and P. pulmonarius) were assessed. Free radical scavenging (DPPH) and reducing power (TEAC) were used to evaluate the antioxidant activities and the total phenolic contents were determined by Folin-Ciocalteu reagent. Pressure cooking improved the scavenging abilities of P. floridanus (>200 %), P. flabellatus (117.6 %), and P. pulmonarius (49.1 %) compared to the uncooked samples. On the other hand, the microwaved Pleurotus eryngii showed 17 % higher in the TEAC value when compared to the uncooked sample. There was, however, no correlation between total phenolic content and antioxidant activities. There could be presence of other bioactive components in the processed mushrooms that may have contributed to the antioxidant activity. These results suggested that customized cooking method can be used to enhance the nutritional value of mushrooms and promote good health.

SELECTION OF CITATIONS
SEARCH DETAIL
...