Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 164: 162-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24852649

ABSTRACT

The wet biomass brewer's spent grain was subjected to hydrothermal carbonization to produce biocoal. Mass balance considerations indicate for about two thirds of the organic carbon of the input biomass to be transferred into the biocoal. The van Krevelen plot refers to a high degree of defunctionalization with decarboxylation prevailing over dehydration. Calorific data revealed a significant energy densification of biocoals as compared to the input substrate. Sorption coefficients of organic analytes covering a wide range of hydrophobicities and polarities on biocoal were similar to those for dissolved humic acids. Data from GC/MS analysis indicated that phenols and benzenediols along with fatty acids released from bound lipids during the hydrothermal process constituted abundant products. Our findings demonstrate that the brewer's spent grain by-product is a good feedstock for hydrothermal carbonization to produce biocoal, the latter offering good prospects for energetic and soil-improving application fields.


Subject(s)
Biotechnology/methods , Carbon/chemistry , Coal , Industrial Waste/analysis , Organic Chemicals/chemistry , Temperature , Water/chemistry , Adsorption , Biofuels/analysis , Carbon/analysis , Nitrogen/analysis , Solubility
2.
Chemosphere ; 92(11): 1472-82, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23648325

ABSTRACT

Organic components in olive mill wastewater (OMW) were analyzed by exhaustive solvent extraction of the lyophilisate followed by pre-chromatographic derivatization techniques and GC/MS-analysis of the extracts. Simple biophenols including tyrosol (Tyr), hydroxytyrosol (OH-Tyr) and homovanillic alcohol as well as complex biophenols including decarbomethoxy ligostride aglycon and decarbomethoxy oleuropein aglycon proved most abundant analytes. Hydroxylated benzoic and cinnamic acids are less abundant, which may indicate a humification process to have occurred. The pattern of organic components obtained from native OMW was compared with that obtained from hydrothermal carbonization (HTC) of the waste product. Former results provided strong evidence that HTC of OMW at 220°C for 14h results in an almost complete hydrolysis of complex aglycons. However, simple biophenols were not decomposed on hydrothermal treatment any further. Phenol and benzenediols as well as low molecular weight organic acids proved most abundant analytes which were generated due to HTC. Similarly to aglycons, lipids including most abundant acylglycerines and less abundant wax esters were subjected almost quantitatively to hydrolysis under hydrothermal conditions. Fatty acids (FAs) released from lipids were further decomposed. The pathways of volatile analytes in both native OMW and aqueous HTC solutions were studied by solventless headspace-Solid Phase Micro Extraction. Basically, a wide array low molecular alcohols and ketones occurring in native OMW survived the HTC process.


Subject(s)
Carbon/chemistry , Organic Chemicals/chemistry , Plant Oils/isolation & purification , Temperature , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Olive Oil , Solutions
3.
Bioresour Technol ; 133: 581-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23475178

ABSTRACT

Hydrothermal carbonization (HTC) is an emerging technology to treat wet biomasses aimed at producing a biochar material. Herein, olive mill wastewater (OMW) was subjected to HTC. Mass balance considerations provide evidence that the yield of biochar is low (~30%, w/w), which is associated with a low fraction of carbohydrates in OMW. The combination of different preparation schemes, pre-chromatographic derivatization reactions and GC/MS analysis for the analysis of organic compounds in aqueous HTC-solutions allowed to identify and quantify a wide array of analytes which belong either to intrinsic constituents of OMW or to characteristic HTC-breakdown products. Biophenols, such as hydroxyl-tyrosol (OH-Tyr), tyrosol (Tyr) account for the most abundant members of the first group. Most abundant breakdown products include phenol and benzenediols as well as short-chain organic acids. Secoiridoids, such as decarbomethoxy ligostride aglycon and decarbomethoxy oleuropein aglycon, all of them being typical components of OMW, are less abundant in HTC-solutions.


Subject(s)
Biotechnology/methods , Carbon/chemistry , Industrial Waste/analysis , Olea/chemistry , Temperature , Wastewater/chemistry , Water/chemistry , Molecular Weight , Organic Chemicals/chemistry , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...