Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Materials (Basel) ; 17(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38612039

ABSTRACT

One of the most fascinating aspects of condensed matter is its ability to conduct electricity, which is particularly pronounced in conventional metals such as copper or silver. Such behavior stems from a strong tendency of valence electrons to delocalize in a periodic potential created by ions in the crystal lattice of a given material. In many advanced materials, however, this basic delocalization process of the valence electrons competes with various processes that tend to localize these very same valence electrons, thus driving the insulating behavior. The two such most important processes are the Mott localization, driven by strong correlation effects among the valence electrons, and the Anderson localization, driven by the interaction of the valence electrons with a strong disorder potential. These two localization processes are almost exclusively considered separately from both an experimental and a theoretical standpoint. Here, we offer an overview of our long-standing research on selected organic conductors and manganites, that clearly show the presence of both these localization processes. We discuss these results within existing theories of Mott-Anderson localization and argue that such behavior could be a common feature of many advanced materials.

2.
Materials (Basel) ; 16(4)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36837341

ABSTRACT

We present a systematic study of electrical resistivity, superconductive transitions and the Hall effect for three systems of compositionally complex amorphous alloys of early (TE) and late (TL) transition metals: (TiZrNbNi)1-xCux and (TiZrNbCu)1-xCox in a broad composition range of 0

3.
ACS Appl Mater Interfaces ; 13(42): 50552-50563, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34661383

ABSTRACT

Growth of 2D materials under ultrahigh-vacuum (UHV) conditions allows for an in situ characterization of samples with direct spectroscopic insight. Heteroepitaxy of transition-metal dichalcogenides (TMDs) in UHV remains a challenge for integration of several different monolayers into new functional systems. In this work, we epitaxially grow lateral WS2-MoS2 and vertical WS2/MoS2 heterostructures on graphene. By means of scanning tunneling spectroscopy (STS), we first examined the electronic structure of monolayer MoS2, WS2, and WS2/MoS2 vertical heterostructure. Moreover, we investigate a band bending in the vicinity of the narrow one-dimensional (1D) interface of the WS2-MoS2 lateral heterostructure and mirror twin boundary (MTB) in the WS2/MoS2 vertical heterostructure. Density functional theory (DFT) is used for the calculation of the band structures, as well as for the density of states (DOS) maps at the interfaces. For the WS2-MoS2 lateral heterostructure, we confirm type-II band alignment and determine the corresponding depletion regions, charge densities, and the electric field at the interface. For the MTB, we observe a symmetric upward bend bending and relate it to the dielectric screening of graphene affecting dominantly the MoS2 layer. Quasi-freestanding heterostructures with sharp interfaces, large built-in electric field, and narrow depletion region widths are proper candidates for future designing of electronic and optoelectronic devices.

4.
Soft Matter ; 10(2): 348-56, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24651841

ABSTRACT

Using a unique home-made cell for four-contact impedance spectroscopy of conductive liquid samples, we establish the existence of two low frequency conductivity relaxations in aqueous solutions of gelatin, in both liquid and gel states. A comparison with diffusion measurements using pulsed field gradient NMR, and circular dichroism spectroscopy, shows that the faster relaxation process is due to gelatin macromolecule self-diffusion. This single molecule diffusion is mostly insensitive to the macroscopic state of the sample, implying that we have a clear separation of gelatin molecules into a free and network-bound phase. Scaling relationships for the self-diffusion indicate that the gelation process is not a percolative phenomenon, but is caused by aggregation of triple helices into a system-spanning fibre network.


Subject(s)
Gelatin/chemistry , Dielectric Spectroscopy , Diffusion , Gels/chemistry , Solutions , Water/chemistry
5.
Rev Sci Instrum ; 82(7): 073907, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21806199

ABSTRACT

We present an improved approach to the impedance spectroscopy of conductive liquid samples using four-electrode measurements. Our method enables impedance measurements of conductive liquids down to the sub-Hertz frequencies, avoiding the electrode polarization effects that usually cripple standard impedance analysers. We have successfully tested our apparatus with aqueous solutions of potassium chloride and gelatin. The first substance has shown flat spectra from ~100 kHz down to sub-Hz range, while the results on gelatin clearly show the existence of two distinct low frequency conductive relaxations.

6.
Phys Rev Lett ; 90(25 Pt 1): 256402, 2003 Jun 27.
Article in English | MEDLINE | ID: mdl-12857150

ABSTRACT

The low temperature phase (LTP) of alpha-(BEDT-TTF)2KHg(SCN)(4) salt is known for its surprising angular dependent magnetoresistance (ADMR), which has been studied intensively in the last decade. However, the nature of the LTP has not been understood until now. Here we analyze theoretically ADMR in unconventional (or nodal) charge-density wave (UCDW). In magnetic field the quasiparticle spectrum in UCDW is quantized, which gives rise to spectacular ADMR. The present model accounts for many striking features of ADMR data in alpha-(BEDT-TTF)2KHg(SCN)(4).

SELECTION OF CITATIONS
SEARCH DETAIL
...