Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Entropy (Basel) ; 25(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36832659

ABSTRACT

We introduce a refined way to diffusely explore complex networks with stochastic resetting where the resetting site is derived from node centrality measures. This approach differs from previous ones, since it not only allows the random walker with a certain probability to jump from the current node to a deliberately chosen resetting node, rather it enables the walker to jump to the node that can reach all other nodes faster. Following this strategy, we consider the resetting site to be the geometric center, the node that minimizes the average travel time to all the other nodes. Using the established Markov chain theory, we calculate the Global Mean First Passage Time (GMFPT) to determine the search performance of the random walk with resetting for different resetting node candidates individually. Furthermore, we compare which nodes are better resetting node sites by comparing the GMFPT for each node. We study this approach for different topologies of generic and real-life networks. We show that, for directed networks extracted for real-life relationships, this centrality focused resetting can improve the search to a greater extent than for the generated undirected networks. This resetting to the center advocated here can minimize the average travel time to all other nodes in real networks as well. We also present a relationship between the longest shortest path (the diameter), the average node degree and the GMFPT when the starting node is the center. We show that, for undirected scale-free networks, stochastic resetting is effective only for networks that are extremely sparse with tree-like structures as they have larger diameters and smaller average node degrees. For directed networks, the resetting is beneficial even for networks that have loops. The numerical results are confirmed by analytic solutions. Our study demonstrates that the proposed random walk approach with resetting based on centrality measures reduces the memoryless search time for targets in the examined network topologies.

2.
Eur Phys J Spec Top ; 231(18-20): 3741-3748, 2022.
Article in English | MEDLINE | ID: mdl-35975209

ABSTRACT

The estimates of the future course of spreading of the SARS-CoV-2 virus are frequently based on Markovian models in which the duration of residence in any compartment is exponentially distributed. Accordingly, the basic reproduction number R 0 is also determined from formulae where it is related to the parameters of such models. The observations show that the start of infectivity of an individual appears nearly at the same time as the onset of symptoms, while the distribution of the incubation period is not an exponential. Therefore, we propose a method for estimation of R 0 for COVID-19 based on the empirical incubation period distribution and assumed very short infectivity period that lasts only few days around the onset of symptoms. We illustrate this venerable approach to estimate R 0 for six major European countries in the first wave of the epidemic. The calculations show that even if the infectivity starts 2 days before the onset of symptoms and stops instantly when they appear (immediate isolation), the value of R 0 is larger than that from the classical, SIR model. For more realistic cases, when only individuals with mild symptoms spread the virus for few days after onset of symptoms, the respective values are even larger. This implies that calculations of R 0 and other characteristics of spreading of COVID-19 based on the classical, Markovian approaches should be taken very cautiously.

3.
Chaos Solitons Fractals ; 160: 112286, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35694643

ABSTRACT

We introduce non-Markovian SIR epidemic spreading model inspired by the characteristics of the COVID-19, by considering discrete- and continuous-time versions. The distributions of infection intensity and recovery period may take an arbitrary form. By taking corresponding choice of these functions, it is shown that the model reduces to the classical Markovian case. The epidemic threshold is analytically determined for arbitrary functions of infectivity and recovery and verified numerically. The relevance of the model is shown by modeling the first wave of the epidemic in Italy, Spain and the UK, in the spring, 2020.

4.
Physica A ; 599: 127480, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35529899

ABSTRACT

In the light of several major epidemic events that emerged in the past two decades, and emphasized by the COVID-19 pandemics, the non-Markovian spreading models occurring on complex networks gained significant attention from the scientific community. Following this interest, in this article, we explore the relations that exist between the mean-field approximated non-Markovian SEIS (Susceptible-Exposed-Infectious-Susceptible) and the classical Markovian SIS, as basic reoccurring virus spreading models in complex networks. We investigate the similarities and seek for equivalences both for the discrete-time and the continuous-time forms. First, we formally introduce the continuous-time non-Markovian SEIS model, and derive the epidemic threshold in a strict mathematical procedure. Then we present the main result of the paper that, providing certain relations between process parameters hold, the stationary-state solutions of the status probabilities in the non-Markovian SEIS may be found from the stationary state probabilities of the Markovian SIS model. This result has a two-fold significance. First, it simplifies the computational complexity of the non-Markovian model in practical applications, where only the stationary distributions of the state probabilities are required. Next, it defines the epidemic threshold of the non-Markovian SEIS model, without the necessity of a thrall mathematical analysis. We present this result both in analytical form, and confirm the result through numerical simulations. Furthermore, as of secondary importance, in an analytical procedure we show that each Markovian SIS may be represented as non-Markovian SEIS model.

5.
Chaos Solitons Fractals ; 142: 110394, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33162690

ABSTRACT

We study Susceptible-Exposed-Asymptomatic-Infectious-Recovered (SEAIR) epidemic spreading model of COVID-19. It captures two important characteristics of the infectiousness of COVID-19: delayed start and its appearance before onset of symptoms, or even with total absence of them. The model is theoretically analyzed in continuous-time compartmental version and discrete-time version on random regular graphs and complex networks. We show analytically that there are relationships between the epidemic thresholds and the equations for the susceptible populations at the endemic equilibrium in all three versions, which hold when the epidemic is weak. We provide theoretical arguments that eigenvector centrality of a node approximately determines its risk to become infected.

6.
Entropy (Basel) ; 22(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33353060

ABSTRACT

Classical option pricing schemes assume that the value of a financial asset follows a geometric Brownian motion (GBM). However, a growing body of studies suggest that a simple GBM trajectory is not an adequate representation for asset dynamics, due to irregularities found when comparing its properties with empirical distributions. As a solution, we investigate a generalisation of GBM where the introduction of a memory kernel critically determines the behaviour of the stochastic process. We find the general expressions for the moments, log-moments, and the expectation of the periodic log returns, and then obtain the corresponding probability density functions using the subordination approach. Particularly, we consider subdiffusive GBM (sGBM), tempered sGBM, a mix of GBM and sGBM, and a mix of sGBMs. We utilise the resulting generalised GBM (gGBM) in order to examine the empirical performance of a selected group of kernels in the pricing of European call options. Our results indicate that the performance of a kernel ultimately depends on the maturity of the option and its moneyness.

7.
Phys Rev E ; 102(4-1): 042315, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33212747

ABSTRACT

We study random walks on complex networks with transition probabilities which depend on the current and previously visited nodes. By using an absorbing Markov chain we derive an exact expression for the mean first passage time between pairs of nodes, for a random walk with a memory of one step. We have analyzed one particular model of random walk, where the transition probabilities depend on the number of paths to the second neighbors. The numerical experiments on paradigmatic complex networks verify the validity of the theoretical expressions, and also indicate that the flattening of the stationary occupation probability accompanies a nearly optimal random search.

8.
Phys Rev E ; 99(6-1): 062312, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31330721

ABSTRACT

Recent works suggest that pooling and sharing may constitute a fundamental mechanism for the evolution of cooperation in well-mixed fluctuating environments. The rationale is that, by reducing the amplitude of fluctuations, pooling and sharing increases the steady-state growth rate at which individuals self-reproduce. However, in reality interactions are seldom realized in a well-mixed structure, and the underlying topology is in general described by a complex network. Motivated by this observation, we investigate the role of the network structure on the cooperative dynamics in fluctuating environments, by developing a model for networked pooling and sharing of resources undergoing a geometric Brownian motion. The study reveals that, while in general cooperation increases the individual steady state growth rates (i.e., is evolutionary advantageous), the interplay with the network structure may yield large discrepancies in the observed individual resource endowments. We comment possible biological and social implications and discuss relations to econophysics.

9.
Phys Rev E ; 97(5-1): 052305, 2018 May.
Article in English | MEDLINE | ID: mdl-29906818

ABSTRACT

We introduce a framework for studying social dilemmas in networked societies where individuals follow a simple state-based behavioral mechanism based on generalized reciprocity, which is rooted in the principle "help anyone if helped by someone." Within this general framework, which applies to a wide range of social dilemmas including, among others, public goods, donation, and snowdrift games, we study the cooperation dynamics on a variety of complex network examples. By interpreting the studied model through the lenses of nonlinear dynamical systems, we show that cooperation through generalized reciprocity always emerges as the unique attractor in which the overall level of cooperation is maximized, while simultaneously exploitation of the participating individuals is prevented. The analysis elucidates the role of the network structure, here captured by a local centrality measure which uniquely quantifies the propensity of the network structure to cooperation by dictating the degree of cooperation displayed both at the microscopic and macroscopic level. We demonstrate the applicability of the analysis on a practical example by considering an interaction structure that couples a donation process with a public goods game.


Subject(s)
Cooperative Behavior , Game Theory , Humans , Nonlinear Dynamics
10.
Phys Rev E ; 96(2-1): 022315, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28950484

ABSTRACT

A growing body of empirical evidence indicates that social and cooperative behavior can be affected by cognitive and neurological factors, suggesting the existence of state-based decision-making mechanisms that may have emerged by evolution. Motivated by these observations, we propose a simple mechanism of anonymous network interactions identified as a form of generalized reciprocity-a concept organized around the premise "help anyone if helped by someone'-and study its dynamics on random graphs. In the presence of such a mechanism, the evolution of cooperation is related to the dynamics of the levels of investments (i.e., probabilities of cooperation) of the individual nodes engaging in interactions. We demonstrate that the propensity for cooperation is determined by a network centrality measure here referred to as neighborhood importance index and discuss relevant implications to natural and artificial systems. To address the robustness of the state-based strategies to an invasion of defectors, we additionally provide an analysis which redefines the results for the case when a fraction of the nodes behave as unconditional defectors.

11.
Sci Rep ; 7: 44649, 2017 03 17.
Article in English | MEDLINE | ID: mdl-28304378

ABSTRACT

Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model's constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination.


Subject(s)
Algorithms , Machine Learning , Models, Theoretical , Area Under Curve , Numerical Analysis, Computer-Assisted , ROC Curve
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(1 Pt 1): 011113, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18763925

ABSTRACT

We analyze the Kuramoto model of phase oscillators with natural frequencies distributed according to a unimodal asymmetric function g(omega) . It is obtained that besides a second-, also a first-order phase transition can appear if the distribution of natural frequencies possesses a sufficiently large flat section. It is derived analytically that for the first-order transitions the characteristic exponents describing the order parameter and synchronizing frequency near the critical point are equal to those for the order parameter in the corresponding symmetric case. Stability analysis of the incoherent phase shows that the synchronizing frequency at the onset of synchronization equals the perturbation rotation velocity at the border of stability. The analytic and numerical results are in agreement with numerical simulations.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 057201, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18233796

ABSTRACT

We consider the Kuramoto model of phase oscillators with natural frequencies distributed according to a unimodal function with the plateau section in the middle representing the maximum and symmetric tails falling off predominantly as |omega-omega0|m, m>0, in the vicinity of the flat region. It is found that the phase transition is of first order as long as there is a finite flat region and that in the vicinity of the critical coupling the following scaling law holds r-rc proportional, variant(K-Kc)2/(2m+3), where r is the order parameter and K is the coupling strength of the interacting oscillators.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 046116, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16711887

ABSTRACT

We consider random diffusive motion of classical particles over the edges of Archimedean lattices. The diffusion coefficient is obtained by using periodic orbit theory. We also study deterministic motion over a honeycomb lattice without the possibility for an immediate return to the preceding node, controlled by a tent map with the golden ratio slope. Numerical analysis is performed to confirm the theoretical results.

SELECTION OF CITATIONS
SEARCH DETAIL
...