Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(14): 4200-4212, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35352559

ABSTRACT

Pd nanorods (PdNRs) have recently come to attention due to their wide array of applications. The green synthesis of PdNR with a relatively high yield and high aspect ratio is challenging. A continuous millifluidic flow reactor (CMFR) has been explored to precisely control mass and heat transfer as well as mixing in the PdNR synthesis processes. CMFRs demonstrate a few drawbacks, such as the presence of parabolic velocity profile in the laminar flow of the reaction solution, causing uneven axial residence time distribution. The CMFRs are likely to show irreversible fouling, which may cause the product quality to deteriorate or result in the channel being clogged. These shortcomings can be avoided or minimized using a segmented millifluidic flow reactor (SMFR) that consists of the solution forming a train of individual segments in another inert medium. This study explores the use of a sustainable reducing agent (l-ascorbic acid) in the presence of potassium bromide (KBr) as the capping agent and poly(vinyl pyrrolidone) (PVP) as the stabilizing agent for PdNR synthesis in an SMFR employing compartmentalized flow of a reaction solution, in which liquid segments consisting of a reaction solution will be immersed in the steam generated by boiling of the solvent water. The effect of reaction parameters such as reagent concentration has been studied on the size and morphology of synthesized Pd nanostructures. A kinetic study has been conducted to calculate the rate of reduction that can be used as a quantitative measure for manipulation of the type and relative concentration of initially formed seeds. It has been shown that the initial reduction rate during the first 45 min of residence time of the millifluidic reactor is about 66% faster compared to the rest of the reaction. A filtration procedure has been utilized to separate Pd nanostructures other than nanorods synthesized in the SMFR.


Subject(s)
Nanostructures , Nanotubes , Ascorbic Acid , Filtration , Nanostructures/chemistry , Palladium/chemistry
2.
Biotechnol J ; 16(4): e2000311, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33135368

ABSTRACT

Biomolecules are increasingly attractive templates for the synthesis of functional nanomaterials. Chief among them is the plant tobacco mosaic virus (TMV) due to its high aspect ratio, narrow size distribution, diverse biochemical functionalities presented on the surface, and compatibility with a number of chemical conjugations. These properties are also easily manipulated by genetic modification to enable the synthesis of a range of metallic and non-metallic nanomaterials for diverse applications. This article reviews the characteristics of TMV and related viruses, and their virus-like particle (VLP) derivatives, and how these may be manipulated to extend their use and function. A focus of recent efforts has been on greater understanding and control of the self-assembly processes that drive biotemplate formation. How these features have been exploited in engineering applications such as, sensing, catalysis, and energy storage are briefly outlined. While control of VLP surface features is well-established, fewer tools exist to control VLP self-assembly, which limits efforts to control template uniformity and synthesis of certain templated nanomaterials. However, emerging advances in synthetic biology, machine learning, and other fields promise to accelerate efforts to control template uniformity and nanomaterial synthesis enabling more widescale industrial use of VLP-based biotemplates.


Subject(s)
Nanostructures , Tobacco Mosaic Virus , Synthetic Biology , Nicotiana , Tobacco Mosaic Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...