Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 29(12): 2951-60, 1990 Mar 27.
Article in English | MEDLINE | ID: mdl-2110819

ABSTRACT

Structural features of bacteriochlorophyll (BChl) a that are required for binding to the light-harvesting proteins of Rhodospirillum rubrum were determined by testing for reconstitution of the B873 or B820 (structural subunit of B873) light-harvesting complexes with BChl a analogues. The results indicate that the binding site is very specific; of the analogues tested, only derivatives of BChl a with ethyl, phytyl, and geranylgeranyl esterifying alcohols and BChl b (phytyl) successfully reconstituted to form B820- and B873-type complexes. BChl analogues lacking magnesium, the C-3 acetyl group, or the C-13(2) carbomethoxy group did not reconstitute to form B820 or B873. Also unreactive were 13(2)-hydroxyBChl a and 3-acetylchlorophyll a. Competition experiments showed that several of these nonreconstituting analogues significantly slowed BChl a binding to form B820 and blocked BChl a-B873 formation, indicating that the analogues may competitively bind to the protein even though they do not form red-shifted complexes. With the R. rubrum polypeptides, BChl b formed complexes that were further red-shifted than those of BChl a; however, the energies of the red shifts, binding behavior, and circular dichroism (CD) spectra were similar. B873 complexes reconstituted with the geranylgeranyl BChl a derivative, which contains the native esterifying alcohol for R. rubrum, showed in-vivo-like CD features, but the phytyl and ethyl B873 complexes showed inverted CD features in the near infrared. The B820 complex with the ethyl derivative was about 30-fold less stable than the two longer esterifying alcohol derivatives, but all formed stable B873 complexes.


Subject(s)
Bacterial Proteins/metabolism , Bacteriochlorophylls/metabolism , Chlorophyll/analogs & derivatives , Rhodospirillum rubrum/metabolism , Bacteriochlorophylls/chemical synthesis , Circular Dichroism , Light-Harvesting Protein Complexes , Magnetic Resonance Spectroscopy , Photosynthetic Reaction Center Complex Proteins , Spectrophotometry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...