Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986806

ABSTRACT

Orthosiphon stamineus is a popular folk herb used to treat diabetes and some other disorders. Previous studies have shown that O. stamineus extracts were able to balance blood glucose levels in diabetic rat animal models. However, the antidiabetic mechanism of O. stamineus is not fully known. This study was carried out to test the chemical composition, cytotoxicity, and antidiabetic activity of O. stamineus (aerial) methanol and water extracts. GC/MS phytochemical analysis of O. stamineus methanol and water extracts revealed 52 and 41 compounds, respectively. Ten active compounds are strong antidiabetic candidates. Oral treatment of diabetic mice with O. stamineus extracts for 3 weeks resulted significant reductions in blood glucose levels from 359 ± 7 mg/dL in diabetic non-treated mice to 164 ± 2 mg/dL and 174 ± 3 mg/dL in water- and methanol-based-extract-treated mice, respectively. The efficacy of O. stamineus extracts in augmenting glucose transporter-4 (GLUT4) translocation to the plasma membrane (PM) was tested in a rat muscle cell line stably expressing myc-tagged GLUT4 (L6-GLUT4myc) using enzyme-linked immunosorbent assay. The methanol extract was more efficient in enhancing GLUT4 translocation to the PM. It increased GLUT4 translocation at 250 µg/mL to 279 ± 15% and 351 ± 20% in the absence and presence of insulin, respectively. The same concentration of water extract enhanced GLUT4 translocation to 142 ± 2.5% and 165 ± 5% in the absence and presence of insulin, respectively. The methanol and water extracts were safe up to 250 µg/mL as measured with a Methylthiazol Tetrazolium (MTT) cytotoxic assay. The extracts exhibited antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. O. stamineus methanol extract reached the maximal inhibition of 77 ± 10% at 500 µg/mL, and O. stamineus water extract led to 59 ± 3% inhibition at the same concentration. These findings indicate that O. stamineus possesses antidiabetic activity in part by scavenging the oxidants and enhancing GLUT4 translocation to the PM in skeletal muscle.

2.
Article in English | MEDLINE | ID: mdl-35356248

ABSTRACT

The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.

3.
Molecules ; 27(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35164311

ABSTRACT

Since ancient times, Mandragora autumnalis has been used as a traditional medicinal plant for the treatment of numerous ailments. In light of this, the current study was designed to isolate and identify the chemical constituents of the flavonoids fraction from M. autumnalis ripe fruit (FFM), and evaluate its DPPH scavenging, anti-lipase, cytotoxicity, antimicrobial and antidiabetic effects. An ethyl acetate extract of M. autumnalis was subjected to a sequence of silica gel column chromatography using different eluents with various polarities. The chemical structures of the isolated compounds were identified using different spectral techniques, including 1H NMR and 13C NMR. FFM's anti-diabetic activity was assessed using a glucose transporter-4 (GLUT4) translocation assay, as well as an inhibition against α-amylase and α-glucosidase using standard biochemical assays. The FFM anti-lipase effect against porcine pancreatic lipase was also evaluated. Moreover, FFM free radical scavenging activity using the DPPH test and antimicrobial properties against eight microbial strains using the micro-dilution method were also assessed. Four flavonoid aglycones were separated from FFM and their chemical structures were identified. The structures of the isolated compounds were established as kaempferol 1, luteolin 2, myricetin 3 and (+)-taxifolin 4, based on NMR spectroscopic analyses. The cytotoxicity test results showed high cell viability (at least 90%) for up to 1 mg/mL concentration of FFM, which is considered to be safe. A dose-dependent increase in GLUT4 translocation was significantly shown (p < 0.05) when the muscle cells were treated with FFM up to 0.5 mg/mL. Moreover, FFM revealed potent α-amylase, α-glucosidase, DPPH scavenging and porcine pancreatic lipase inhibitory activities compared with the positive controls, with IC50 values of 72.44 ± 0.89, 39.81 ± 0.74, 5.37 ± 0.41 and 39.81 ± 1.23 µg/mL, respectively. In addition, FFM inhibited the growth of all of the tested bacterial and fungal strains and showed the greatest antibacterial activity against the K. pneumoniae strain with a MIC value of 0.135 µg/mL. The four flavonoid molecules that constitute the FFM have been shown to have medicinal promise. Further in vivo testing and formulation design are needed to corroborate these findings, which are integral to the pharmaceutical and food supplement industries.


Subject(s)
Anti-Infective Agents/chemistry , Antioxidants/chemistry , Enzyme Inhibitors/chemistry , Flavonoids/chemistry , Hypoglycemic Agents/chemistry , Mandragora/chemistry , Animals , Anti-Infective Agents/pharmacology , Antioxidants/pharmacology , Cell Line , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Fruit/chemistry , Humans , Hypoglycemic Agents/pharmacology , Lipase/antagonists & inhibitors , Swine
4.
Article in English | MEDLINE | ID: mdl-34306136

ABSTRACT

Diabetes mellitus is a metabolic disease that predominates, nowadays. It causes hyperglycemia and consequently major health complications. Type II diabetes is the most common form and is a result of insulin resistance in the target tissues. To treat this disease, several mechanisms have been proposed. The most direct route is via inhibiting the intestinal enzymes, e.g., α-glucosidase and α-amylase, responsible for intestinal polysaccharide digestion that therefore would reduce the absorption of monosugars through the intestinal walls. In this study, we shed the light on this route by testing the inhibitory effect of Ocimum basilicum extract on the enzymes α-glucosidase and α-amylase in vitro and in silico. Experimental procedures were performed to test the effect of the O. basilicum methanol extract from aerial parts followed by the in silico docking. 500 µg/mL of the extract led to 70.2% ± 8.6 and 25.4% ± 3.3 inhibition on α-glucosidase and α-amylase activity, respectively. Similarly, the effect of caffeic acid, a major extract ingredient, was also tested, and it caused 42.7% ± 3.0 and 47.1% ± 4.0 inhibition for α-amylase and α-glucosidase, respectively. Docking experiments were performed to predict the phytochemicals responsible for this robust inhibitory activity in the O. basilicum extracts. Several compounds have shown variable levels of inhibition, e.g., caffeic acid, pyroglutamic acid, and uvasol. The results indicated that O. basilicum can be a potent antidiabetic drug.

5.
Article in English | MEDLINE | ID: mdl-33293988

ABSTRACT

Teucrium leucocladum is among the most used traditional medicinal plants in Palestine, which is used for the treatment of hyperglycemia and colon spasms from ancient times. Therefore, the current investigation aimed for the first time to determine the hypoglycemic, hypolipidemic, and oxidative stress inhibitory effects of the aerial parts (stem and leaves) of T. leucocladum hydrophilic (water) extract in streptozotocin- (STZ-) induced diabetic rats (65 mg/kg), given intraperitoneally at a dose of 100 mg/kg for 21 days. The rats were divided into four groups as control (C), control + T. leucocladum extract (C + TL), diabetes (D), and diabetes + T. leucocladum extract (D + TL). The antioxidant activity was analyzed using in vitro 2,2-diphenyl-1-picrylhydrazyl and in vivo methods by measuring the plasma and tissue malondialdehyde (MDA) levels using a colorimetric assay. On the other hand, glutathione peroxidase (GSH-Px), erythrocyte superoxide dismutase (SOD) enzyme levels, serum paraoxonase (PON), and arylesterase (ARE) enzyme activities were assessed by utilizing standard biochemical kits. Besides, the blood glucose and serum insulin levels were assessed by a glucometer and Rat ELISA Kit, respectively. However, the autoanalyzer was used to evaluate the lipid profile. The diabetic rat group that administered T. leucocladum extract showed the best reduction in the tissue and plasma MDA levels and an increase of insulin-releasing potentials. Besides, the serum PON and ARE activities and erythrocyte superoxide dismutase and whole blood glutathione peroxidase enzyme levels were significantly increased in all animals treated with T. leucocladum extract. The current investigation demonstrated that T. leucocladum manifests antihyperglycemic and antihyperlipidemic effects and also increased the antioxidative defense system and reduced the lipid peroxidation process in experimental diabetic rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...