Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 85(2-3): 317-24, 1992 Nov.
Article in English | MEDLINE | ID: mdl-24197321

ABSTRACT

Zonal pelargoniums exhibit biparental plastid inheritance. After G x W plastid crosses the progeny are a mixture of green, variegated and white embryos corresponding to a maternal, biparental or paternal inheritance of plastids, respectively. There are two patterns of segregation: type-I females have families in which the majority of embryos are green, variegated are of intermediate frequency and white are the least frequent. Type-II females have families in which green and white embryos are present at about the same frequency and variegated are the least common. The results of many selfs and crosses made within and between 8 type-I and 8 type-II plants led us to conclude that the type of female was determined by its genotype with respect to a pair of complementary genes. Plants giving rise to the type-II pattern contained one or two copies of the dominant alleles of both genes, whereas in the absence of either one or both dominant alleles the plants were type I. The genes were called Pr1/pr1 and Pr2/pr2, an adaptation of symbolism used previously. All 8 type IIs were double heterozygotes Pr1pr1, Pr2pr2, whereas we found 3 genotypes among the type Is, Pr1Pr1, pr2pr2; pr1pr1, Pr2Pr2 and pr1pr1, Pr2pr2. In unrelated experiments we found type IIs of which some were again double heterozygotes and others single heterozygotes Pr1pr1, Pr2Pr2 or Pr1Pr1, Pr2pr2. The model displaces an earlier model based on the proposed operation of a gametophytic lethal or incompatibility system.

2.
Theor Appl Genet ; 62(2): 185-91, 1982 Jun.
Article in English | MEDLINE | ID: mdl-24270569

ABSTRACT

Two distinct segregation patterns are recognized after G X W plastid crosses in Pelargonium. Type I parents produce offspring in which maternal zygotes are frequent, biparental intermediate, and paternal zygotes rare (MZ>BPZ>PZ), as defined by the presence or absence of green or white plastids in the young embryos into which the zygotes develop. Type II parents produce offspring in which maternal and paternal zygotes are frequent with biparental zygotes the least frequent class (MZ>BPZ

4.
Theor Appl Genet ; 60(1): 43-53, 1981 Jan.
Article in English | MEDLINE | ID: mdl-24276587

ABSTRACT

The distributions are given of gene frequencies among embryos after G X W and W X G plastid crosses within and between eight Pelargonium cultivars and some of their inbred or hybrid derivatives.Two distinct segregation patterns are recognized. Homozygous type I female parents (Pr1Pr1) have a high frequency of progeny with only maternal alleles, are intermediate for biparental and low for paternal offspring. Heterozygous type II female plants (Pr1Pr2) have an equally high frequency of maternal and paternal offspring and a generally low biparental frequency. These correspond to L-shaped and U-shaped gene frequency distributions respectively in which the only modes are at 0 per cent (maternal embryos) and 100 per cent (paternal embryos), with no mode corresponding to the population mean and no sign of a Gaussian distribution.The extremely variable plastid gene frequencies are strongly influenced by the maternal nuclear genotype and by the plastid genotype in which the wild-type allele is always more successful than the mutant in strict comparisons.The relative frequencies of maternal and paternal zygotes, and the mean gene frequency among all the zygotes in a cross, are explicable in terms of the input frequencies of genes from the two parents, their degree of mixing, and by some form of selective replication of plastids. This selection is controlled by nuclear and plastid genotypes which may act in the same direction, to increase the frequency of either the maternal or the paternal alleles, or in opposition. But selection alone is inadequate to explain the shapes of the gene frequency distributions. Instead, a model is proposed in which the segregation or replication of plastids appears to have a strong random element, which results in random drift of gene frequencies within a heteroplasmic zygote or embryo.

5.
Planta ; 130(3): 333-8, 1976 Jan.
Article in English | MEDLINE | ID: mdl-24424649

ABSTRACT

The different mechanisms of vacuole formation in embryonic tissues of Pelargonium are described. Some vacuoles are formed by mechanisms widely reported in a variety of plant species and plant tissues, but other vacuoles are initiated as differentiated zones of the cytoplasm around which the tonoplast is gradually built up form vesicles and small cisternae.

6.
Biochem J ; 134(1): 1-10, 1973 May.
Article in English | MEDLINE | ID: mdl-4723222

ABSTRACT

High-yielding strains of Claviceps purpurea (Fr.) Tul, grown on a defined medium, have been used for a study of the biosynthesis of the peptide ergot alkaloid, ergotamine. l-[U-(14)C]tryptophan, dl-[2-(14)C]mevalonic acid lactone, sodium [2-(14)C]acetate, sodium [(14)C]formate and the methyl group of l-[methyl-(14)C]methionine were efficiently incorporated into the peptide alkaloids and specifically labelled the ergoline moiety of ergotamine. These results are the same as previously found for the biosynthesis of other ergot alkaloids. Time-course incubation experiments demonstrated that l-[U-(14)C]phenylalanine, l-[U-(14)C]proline and l-[U-(14)C]alanine were incorporated into the peptide ergot alkaloids. Chemical degradation of the radioactive alkaloid derived from additional precursor incubation experiments showed that phenylalanine and proline function as the most efficient precursors, and specifically label the constitutive side-chain phenylalanyl and prolyl moieties of the alkaloid. The evidence obtained from l-[U-(14)C]alanine-incorporation experiments was inconclusive. However, degradation of ergotamine isolated after incubation with dl-[1-(14)C]alanine, showed that the carboxyl group of the labelled amino acid was specifically incorporated into the alpha-hydroxy-alpha-amino acid residue of the alkaloid. This, in conjunction with the l-[U-(14)C]alanine-incorporation results, showed conclusively that all three carbon atoms of alanine were incorporated as a biosynthetic unit into the alpha-hydroxy-alpha-amino acid moiety of ergotamine.


Subject(s)
Ergotamine/biosynthesis , Plants/metabolism , Acetates/metabolism , Alanine/metabolism , Amino Acids/analysis , Carbon Isotopes , Cells, Cultured , Chromatography, Ion Exchange , Chromatography, Thin Layer , Culture Media , Electrophoresis, Paper , Ergotamine/analysis , Ergotamine/isolation & purification , Formates/metabolism , Hydrogen-Ion Concentration , Isomerism , Methionine/metabolism , Mevalonic Acid/metabolism , Phenylalanine/metabolism , Proline/metabolism , Spectrophotometry, Ultraviolet , Tryptophan/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...