Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(1): 114-121, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38164942

ABSTRACT

Extended defects in wide-bandgap semiconductors have been widely investigated using techniques providing either spectroscopic or microscopic information. Nano-Fourier transform infrared spectroscopy (nano-FTIR) is a nondestructive characterization method combining FTIR with nanoscale spatial resolution (∼20 nm) and topographic information. Here, we demonstrate the capability of nano-FTIR for the characterization of extended defects in semiconductors by investigating an in-grown stacking fault (IGSF) present in a 4H-SiC epitaxial layer. We observe a local spectral shift of the mid-infrared near-field response, consistent with the identification of the defect stacking order as 3C-SiC (cubic) from comparative simulations based on the finite dipole model (FDM). This 3C-SiC IGSF contrasts with the more typical 8H-SiC IGSFs reported previously and is exemplary in showing that nanoscale spectroscopy with nano-FTIR can provide new insights into the properties of extended defects, the understanding of which is crucial for mitigating deleterious effects of such defects in alternative semiconductor materials and devices.

2.
Nat Commun ; 15(1): 938, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296966

ABSTRACT

Electrochemical conversion of CO2 offers a sustainable route for producing fuels and chemicals. Pd-based catalysts are effective for converting CO2 into formate at low overpotentials and CO/H2 at high overpotentials, while undergoing poorly understood morphology and phase structure transformations under reaction conditions that impact performance. Herein, in-situ liquid-phase transmission electron microscopy and select area diffraction measurements are applied to track the morphology and Pd/PdHx phase interconversion under reaction conditions as a function of electrode potential. These studies identify the degradation mechanisms, including poisoning and physical structure changes, occurring in PdHx/Pd electrodes. Constant potential density functional theory calculations are used to probe the reaction mechanisms occurring on the PdHx structures observed under reaction conditions. Microkinetic modeling reveals that the intercalation of *H into Pd is essential for formate production. However, the change in electrochemical CO2 conversion selectivity away from formate and towards CO/H2 at increasing overpotentials is due to electrode potential dependent changes in the reaction energetics and not a consequence of morphology or phase structure changes.

3.
ACS Appl Mater Interfaces ; 15(40): 47649-47660, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37782678

ABSTRACT

Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.

4.
Biomacromolecules ; 24(1): 258-268, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36577132

ABSTRACT

Cellulose is a structural linear polysaccharide that is naturally produced by plants and bacteria, making it the most abundant biopolymer on Earth. The hierarchical structure of cellulose from the nano- to microscale is intimately linked to its biosynthesis and the ability to process this sustainable resource for materials applications. Despite this, the morphology of bacterial cellulose microfibrils and their assembly into higher order structures, as well as the structural origins of the alternating crystalline and disordered supramolecular structure of cellulose, have remained elusive. In this work, we employed high-resolution transmission electron and atomic force microscopies to study the morphology of bacterial cellulose ribbons at different levels of its structural hierarchy and provide direct visualization of nanometer-wide microfibrils. The non-persistent twisting of cellulose ribbons was characterized in detail, and we found that twists are associated with nanostructural defects at the bundle and microfibril levels. To investigate the structural origins of the persistent disordered regions that are present along cellulose ribbons, we employed a correlative super-resolution light and electron microscopy workflow and observed that the disordered regions that can be seen in super-resolution fluorescence microscopy largely correlated with the ribbon twisting observed in electron microscopy. Unraveling the hierarchical assembly of bacterial cellulose and the ultrastructural basis of its disordered regions provides insights into its biosynthesis and susceptibility to hydrolysis. These findings are important to understand the cell-directed assembly of cellulose, develop new cellulose-based nanomaterials, and develop more efficient biomass conversion strategies.


Subject(s)
Cellulose , Polysaccharides , Cellulose/chemistry , Polysaccharides/chemistry , Microscopy, Atomic Force , Microscopy, Electron , Bacteria/chemistry
5.
J Microsc ; 287(1): 19-31, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35415878

ABSTRACT

The visualisation and quantification of pore networks and main phases have been critical research topics in cementitious materials as many critical mechanical and chemical properties and infrastructure reliability rely on these 3D characteristics. In this study, we realised the mesoscale serial sectioning and analysis up to ∼80 µm by ∼90 µm by ∼60 µm on portland cement mortar using plasma focused ion beam (PFIB) for the first time. The workflow of working with mortar and PFIB was established applying a prepositioned hard silicon mask to reduce curtaining. Segmentation with minimal human interference was performed using a trained neural network, in which multiple types of segmentation models were compared. Combining PFIB analysis at microscale with X-ray micro-computed tomography, the analysis of capillary pores and air voids ranging from hundreds of nanometres (nm) to millimetres (mm) can be conducted. The volume fraction of large capillary pores and air voids are 11.5% and 12.7%, respectively. Moreover, the skeletonisation of connected capillary pores clearly shows fluid transport pathways, which is a key factor determining durability performance of concrete in aggressive environments. Another interesting aspect of the FIB tomography is the reconstruction of anhydrous phases, which could enable direct study of hydration kinetics of individual cement phases.

6.
ACS Appl Mater Interfaces ; 13(46): 55428-55439, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34780159

ABSTRACT

Scalable synthesis of two-dimensional gallium (2D-Ga) covered by graphene layers was recently realized through confinement heteroepitaxy using silicon carbide substrates. However, the thickness, uniformity, and area coverage of the 2D-Ga heterostructures have not previously been studied with high-spatial resolution techniques. In this work, we resolve and measure the 2D-Ga heterostructure thicknesses using scanning electron microscopy (SEM). Utilizing multiple correlative methods, we find that SEM image contrast is directly related to the presence of uniform bilayer Ga at the interface and a variation of the number of graphene layers. We also investigate the origin of SEM contrast using both experimental measurements and theoretical calculations of the surface potentials. We find that a carbon buffer layer is detached due to the gallium intercalation, which increases the surface potential as an indication of the 2D-Ga presence. We then scale up the heterostructure characterization over a few-square millimeter area by segmenting SEM images, each acquired with nanometer-scale in-plane resolution. This work leverages the spectroscopic imaging capabilities of SEM that allows high-spatial resolution imaging for tracking intercalants, identifying relative surface potentials, determining the number of 2D layers, and further characterizing scalability and uniformity of low-dimensional materials.

7.
Adv Mater ; 33(44): e2104265, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34480500

ABSTRACT

Chemically stable quantum-confined 2D metals are of interest in next-generation nanoscale quantum devices. Bottom-up design and synthesis of such metals could enable the creation of materials with tailored, on-demand, electronic and optical properties for applications that utilize tunable plasmonic coupling, optical nonlinearity, epsilon-near-zero behavior, or wavelength-specific light trapping. In this work, it is demonstrated that the electronic, superconducting, and optical properties of air-stable 2D metals can be controllably tuned by the formation of alloys. Environmentally robust large-area 2D-Inx Ga1- x alloys are synthesized byConfinement Heteroepitaxy (CHet). Near-complete solid solubility is achieved with no evidence of phase segregation, and the composition is tunable over the full range of x by changing the relative elemental composition of the precursor. The optical and electronic properties directly correlate with alloy composition, wherein the dielectric function, band structure, superconductivity, and charge transfer from the metal to graphene are all controlled by the indium/gallium ratio in the 2D metal layer.

8.
Adv Mater ; 32(50): e2005159, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33169451

ABSTRACT

Reliable, controlled doping of 2D transition metal dichalcogenides will enable the realization of next-generation electronic, logic-memory, and magnetic devices based on these materials. However, to date, accurate control over dopant concentration and scalability of the process remains a challenge. Here, a systematic study of scalable in situ doping of fully coalesced 2D WSe2 films with Re atoms via metal-organic chemical vapor deposition is reported. Dopant concentrations are uniformly distributed over the substrate surface, with precisely controlled concentrations down to <0.001% Re achieved by tuning the precursor partial pressure. Moreover, the impact of doping on morphological, chemical, optical, and electronic properties of WSe2 is elucidated with detailed experimental and theoretical examinations, confirming that the substitutional doping of Re at the W site leads to n-type behavior of WSe2 . Transport characteristics of fabricated back-gated field-effect-transistors are directly correlated to the dopant concentration, with degrading device performances for doping concentrations exceeding 1% of Re. The study demonstrates a viable approach to introducing true dopant-level impurities with high precision, which can be scaled up to batch production for applications beyond digital electronics.

9.
Small ; 16(45): e2004437, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33078550

ABSTRACT

Here the novel direct heteroepitaxial growth method of a 3D heteroepitaxial system is demonstrated on a 3D substrate, CdTe (111)/Al2 O3 (0001), which forms a spontaneous vdW-like bond at the interface, instead of the two 3D crystals being strongly bound. Despite a large lattice mismatch, the thin films are single crystals and maintain high quality due the compliance of the interface which accommodates strain. This weak bonding interface is accomplished by the self-assembly of a pseudomorphic chalcogenide layer on the sapphire surface during growth. Since the vdW-like interface forms spontaneously in situ during growth, it is easily scalable to large wafer sizes, without the need to layer transfer 2D materials onto the growth substrate for remote epitaxy. Further, the weak adhesion of the films on the substrates allow for epitaxial film transfer to a variety of other substrates, leaving the original growth substrate for future reuse. This type of 3D/3D vdW-like interface is exploitable as a compliant interlayer for additional epitaxy, and may even be observable directly in other material systems grown on complex oxides, allowing for the production of large area high quality freestanding and layer transferred epitaxial devices for material systems not currently possible by conventional processing techniques.

10.
Nano Lett ; 20(11): 8312-8318, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33079555

ABSTRACT

Near-infrared-to-visible second harmonic generation from air-stable two-dimensional polar gallium and indium metals is described. The photonic properties of 2D metals, including the largest second-order susceptibilities reported for metals (approaching 10 nm/V), are determined by the atomic-level structure and bonding of two-to-three-atom-thick crystalline films. The bond character evolved from covalent to metallic over a few atomic layers, changing the out-of-plane metal-metal bond distances by approximately ten percent (0.2 Å), resulting in symmetry breaking and an axial electrostatic dipole that mediated the large nonlinear response. Two different orientations of the crystalline metal atoms, corresponding to lateral displacements <2 Å, persisted in separate micrometer-scale terraces to generate distinct harmonic polarizations. This strong atomic-level structure-property interplay suggests metal photonic properties can be controlled with atomic precision.

11.
Viruses ; 12(4)2020 04 09.
Article in English | MEDLINE | ID: mdl-32283768

ABSTRACT

Developing novel antimicrobials capable of controlling multidrug-resistant bacterial pathogens is essential to restrict the use of antibiotics. Bacteriophages (phages) constitute a major resource that can be harnessed as an alternative to traditional antimicrobial therapies. Phage ZCSE2 was isolated among several others from raw sewage but was distinguished by broad-spectrum activity against Salmonella serovars considered pathogenic to humans and animals. Lytic profiles of ZCSE2 against a panel of Salmonella were determined together with low temperature activity and pH stability. The morphological features of the phage and host infection processes were characterized using a combination of transmission electron and atomic force microscopies. Whole genome sequencing of ZCSE2 produced a complete DNA sequence of 53,965 bp. No known virulence genes were identified in the sequence data, making ZCSE2 a good candidate for phage-mediated biological control purposes. ZCSE2 was further tested against S. Enteritidis in liquid culture and was observed to reduce the target bacterium to below the limits of detection from initial concentrations of 107-108 Colony Forming Units (CFU)/mL. With a broad host-range against pathogenic Salmonella serovars, phage ZCSE2 constitutes a potential tool against a major cause of human and animal disease.


Subject(s)
Salmonella Infections/microbiology , Salmonella Phages/physiology , Salmonella enterica/virology , Bacteriolysis , Genome, Viral , Genomics/methods , Microscopy, Atomic Force , Phage Therapy , Salmonella Infections/therapy , Salmonella Phages/isolation & purification , Salmonella Phages/ultrastructure , Salmonella enterica/classification , Whole Genome Sequencing
12.
ACS Nano ; 13(6): 6730-6741, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31184132

ABSTRACT

Surface phonon polaritons (SPhPs), the surface-bound electromagnetic modes of a polar material resulting from the coupling of light with optic phonons, offer immense technological opportunities for nanophotonics in the infrared (IR) spectral region. However, once a particular material is chosen, the SPhP characteristics are fixed by the spectral positions of the optic phonon frequencies. Here, we provide a demonstration of how the frequency of these optic phonons can be altered by employing atomic-scale superlattices (SLs) of polar semiconductors using AlN/GaN SLs as an example. Using second harmonic generation (SHG) spectroscopy, we show that the optic phonon frequencies of the SLs exhibit a strong dependence on the layer thicknesses of the constituent materials. Furthermore, new vibrational modes emerge that are confined to the layers, while others are centered at the AlN/GaN interfaces. As the IR dielectric function is governed by the optic phonon behavior in polar materials, controlling the optic phonons provides a means to induce and potentially design a dielectric function distinct from the constituent materials and from the effective-medium approximation of the SL. We show that atomic-scale AlN/GaN SLs instead have multiple Reststrahlen bands featuring spectral regions that exhibit either normal or extreme hyperbolic dispersion with both positive and negative permittivities dispersing rapidly with frequency. Apart from the ability to engineer the SPhP properties, SL structures may also lead to multifunctional devices that combine the mechanical, electrical, thermal, or optoelectronic functionality of the constituent layers. We propose that this effort is another step toward realizing user-defined, actively tunable IR optics and sources.

13.
Opt Express ; 27(9): 12529-12540, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052793

ABSTRACT

We report on high-quality tellurium oxide waveguides integrated on a low-loss silicon nitride wafer-scale platform. The waveguides consist of silicon nitride strip features, which are fabricated using a standard foundry process and a tellurium oxide coating layer that is deposited in a single post-processing step. We show that by adjusting the Si3N4 strip height and width and TeO2 layer thickness, a small mode area, small bend radius and high optical intensity overlap with the TeO2 can be obtained. We investigate transmission at 635, 980, 1310, 1550 and 2000 nm wavelengths in paperclip waveguide structures and obtain low propagation losses down to 0.6 dB/cm at 2000 nm. These results illustrate the potential for compact linear, nonlinear and active tellurite glass devices in silicon nitride photonic integrated circuits operating from the visible to mid-infrared.

14.
Microsc Microanal ; 25(3): 705-710, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30867078

ABSTRACT

Highly-directional image artifacts such as ion mill curtaining, mechanical scratches, or image striping from beam instability degrade the interpretability of micrographs. These unwanted, aperiodic features extend the image along a primary direction and occupy a small wedge of information in Fourier space. Deleting this wedge of data replaces stripes, scratches, or curtaining, with more complex streaking and blurring artifacts-known within the tomography community as "missing wedge" artifacts. Here, we overcome this problem by recovering the missing region using total variation minimization, which leverages image sparsity-based reconstruction techniques-colloquially referred to as compressed sensing (CS)-to reliably restore images corrupted by stripe-like features. Our approach removes beam instability, ion mill curtaining, mechanical scratches, or any stripe features and remains robust at low signal-to-noise. The success of this approach is achieved by exploiting CS's inability to recover directional structures that are highly localized and missing in Fourier Space.

15.
Micron ; 120: 74-79, 2019 05.
Article in English | MEDLINE | ID: mdl-30802756

ABSTRACT

Focused ion beam coupled with scanning electron microscopy (FIB-SEM) is a popular technique for advanced electron microscopy with applications such as, high-precision site-specific lamella sample preparation for transmission electron microscopy (TEM) and slice-and-view FIB 3-dimensional tomography. Damage caused by the electron imaging component of FIB-SEM may be compounded with damage from the ions during the ion milling process. There are known strategies for mitigating damage from ions and electrons (cryo-SEM, dose-control, voltage control), but the electron damage on common embedding resins for EM has not been explored in detail beyond their resistance to shape-change. The relationship between beam parameters and damage mechanisms remains unclear. Since we are relying on the physical, chemical and thermal stability of embedded samples during ion-beam milling, it is important to distinguish electron beam damage from ion beam damage. Scanning transmission X-ray microscopy (STXM) has been used for analyzing the electron beam radiation damage on polymer films by characterizing the chemical bonding changes. In this paper, we focus on the effect of beam voltage and electron dose on electron beam damage to epoxy resin thin films. Irradiated areas on polymer thin films were characterized by near edge X-ray absorption fine structure (NEXAFS) in STXM. We found that, even when using low current and voltage, the electron beam can still cause noticeable chemical changes within the polymer film. The degree of electron beam damage depends not only on the beam energy, but also on the amount of inelastic scattering occurring within the material, as determined by the sample thickness.

16.
Microsc Microanal ; 24(6): 657-666, 2018 12.
Article in English | MEDLINE | ID: mdl-30523773

ABSTRACT

We present a flexible linear optimization model for correcting multi-angle curtaining effects in plasma focused ion beam scanning electron microscopy (PFIB-SEM) images produced by rocking-polishing schemes. When PFIB-SEM is employed in a serial sectioning tomography workow, it is capable of imaging large three-dimensional volumes quickly, providing rich information in the critical 10-100 nm feature length scale. During tomogram acquisition, a "rocking polish" is often used to reduce straight-line "curtaining" gradations in the milled sample surface. While this mitigation scheme is effective for deep curtains, it leaves shallower line artifacts at two discretized angles. Segmentation and other automated processing of the image set requires that these artifacts be corrected for accurate microstructural quantification. Our work details a new Fourier-based linear optimization model for correcting curtaining artifacts by targeting curtains at two discrete angles. We demonstrate its capabilities by processing images from a tomogram from a multiphase, heterogeneous concrete sample. We present methods for selecting the parameters which meet the user's goals most appropriately. Compared to previous works, we show that our model provides effective multi-angle curtain correction without introducing artifacts into the image, modifying non-curtain structures or causing changes to the contrast of voids. Our algorithm can be easily parallelized to take advantage of multi-core hardware.

17.
Nanoscale ; 9(25): 8815-8824, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28627555

ABSTRACT

The crystallization of amorphous germanium telluride (GeTe) thin films is controlled with nanoscale resolution using the heat from a thermal AFM probe. The dramatic differences between the amorphous and crystalline GeTe phases yield embedded nanoscale features with strong topographic, electronic, and optical contrast. The flexibility of scanning probe lithography enables the width and depth of the features, as well as the extent of their crystallization, to be controlled by varying probe temperature and write speed. Together, these technologies suggest a new approach to nanoelectronic and opto-electronic device fabrication.

18.
Sci Rep ; 6: 34140, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27658850

ABSTRACT

One of the most important goals of condensed matter physics is materials by design, i.e. the ability to reliably predict and design materials with a set of desired properties. A striking example is the deterministic enhancement of the superconducting properties of materials. Recent experiments have demonstrated that the metamaterial approach is capable of achieving this goal, such as tripling the critical temperature TC in Al-Al2O3 epsilon near zero (ENZ) core-shell metamaterial superconductors. Here, we demonstrate that an Al/Al2O3 hyperbolic metamaterial geometry is capable of a similar TC enhancement, while having superior transport and magnetic properties compared to the core-shell metamaterial superconductors.

19.
Analyst ; 141(7): 2191-8, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26953357

ABSTRACT

Horseradish peroxidase (HRP) was encapsulated in self-assembled lithocholic acid (LCA) based organic nanotubes and its catalytic activity before and after thermal treatment was measured for comparison with free HRP. The apparent kcat (kcat/Km) for nanotube encapsulated HRP remained almost the same before and after thermal treatment, reporting an average value of 3.7 ± 0.4 µM(-1) s(-1). The apparent kcat value for free HRP decreased from 14.8 ± 1.3 µM(-1) s(-1) for samples stored at 4 °C to 2.4 ± 0.1 µM(-1) s(-1) after thermal treatment for 8 h at 55 °C. The Michaelis-Menten constants, Km, determined for encapsulated HRP and free HRP were relatively unperturbed by storage conditions at 4 °C or thermally treated at 55 °C for varying time periods from 2-8 h, with encapsulated HRP having a slightly higher Km than free HRP (13.4 ± 0.9 µM versus 11.7 ± 0.4 µM). The amount of HRP encapsulated in LCA nanotubes increased dramatically when the mixture of HRP and LCA nanotubes was brought to an elevated temperature. Within 4 h of thermal treatment at 55 °C, the amount of HRP encapsulated by the LCA nanotubes was more than 4 times the amount of HRP encapsulated when equilibrated at 4 °C for 7 days. Molecular dynamics (MD) simulations show that the higher degree of exposure of hydrophobic residues in HRP at elevated temperatures enhances the hydrophobic interaction between HRP and the nanotube wall, resulting in the increased amount of HRP surface adsorption and, hence, the overall amount of encapsulation inside the nanotubes.


Subject(s)
Biocatalysis , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism , Nanotubes/chemistry , Adsorption , Capsules , Enzyme Stability , Enzymes, Immobilized/metabolism , Kinetics , Temperature
20.
Nano Lett ; 16(2): 1455-61, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26784372

ABSTRACT

Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate.

SELECTION OF CITATIONS
SEARCH DETAIL
...