Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 20899, 2022 12 03.
Article in English | MEDLINE | ID: mdl-36463258

ABSTRACT

Microtubules, cylindrical assemblies of tubulin proteins with a 25 nm diameter and micrometer lengths, are a central part of the cytoskeleton and also serve as building blocks for nanobiodevices. Microtubule breaking can result from the activity of severing enzymes and mechanical stress. Breaking can lead to a loss of structural integrity, or an increase in the numbers of microtubules. We observed breaking of taxol-stabilized microtubules in a gliding motility assay where microtubules are propelled by surface-adhered kinesin-1 motor proteins. We find that over 95% of all breaking events are associated with the strong bending following pinning events (where the leading tip of the microtubule becomes stuck). Furthermore, the breaking rate increased exponentially with increasing curvature. These observations are explained by a model accounting for the complex mechanochemistry of a microtubule. The presence of severing enzymes is not required to observe breaking at rates comparable to those measured previously in cells.


Subject(s)
Cytoskeleton , Microtubules , Tubulin , Kinesins , Cell Migration Assays , Membrane Proteins
2.
JBMR Plus ; 5(3): e10467, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33778328

ABSTRACT

Bone adapts its architecture to the applied load; however, it is still unclear how bone mechano-adaptation is coordinated and why potential for adaptation adjusts during the life course. Previous animal models have suggested strain as the mechanical stimulus for bone adaptation, but yet it is unknown how mouse cortical bone load-related strains vary with age and sex. In this study, full-field strain maps (at 1 N increments up to 12 N) on the bone surface were measured in young, adult, and old (aged 10, 22 weeks, and 20 months, respectively), male and female C57BL/6J mice with load applied using a noninvasive murine tibial model. Strain maps indicate a nonuniform strain field across the tibial surface, with axial compressive loads resulting in tension on the medial side of the tibia because of its curved shape. The load-induced surface strain patterns and magnitudes show sexually dimorphic changes with aging. A comparison of the average and peak tensile strains indicates that the magnitude of strain at a given load generally increases during maturation, with tibias in female mice having higher strains than in males. The data further reveal that postmaturation aging is linked to sexually dimorphic changes in average and maximum strains. The strain maps reported here allow for loading male and female C57BL/6J mouse legs in vivo at the observed ages to create similar increases in bone surface average or peak strain to more accurately explore bone mechano-adaptation differences with age and sex. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

4.
Langmuir ; 36(27): 7901-7907, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32551689

ABSTRACT

The creation of complex active nanosystems integrating cytoskeletal filaments propelled by surface-adhered motor proteins often relies on the filaments' ability to glide over up to meter-long distances. While theoretical considerations support this ability, we show that microtubule detachment (either spontaneous or triggered by a microtubule crossing event) is a non-negligible phenomenon that has been overlooked until now. The average gliding distance before spontaneous detachment was measured to be 30 ± 10 mm for a functional kinesin-1 density of 500 µm-2 and 9 ± 4 mm for a functional kinesin-1 density of 100 µm-2 at 1 mM ATP. Even microtubules longer than 3 µm detached, suggesting that spontaneous detachment is not caused by the stochastic absence of motors or their stochastic release due to a limited run length.


Subject(s)
Kinesins , Microtubules
5.
J Vis Exp ; (143)2019 01 26.
Article in English | MEDLINE | ID: mdl-30741264

ABSTRACT

This protocol describes how to create kinesin-powered molecular shuttles with a weak and reversible attachment of the kinesins to the surface. In contrast to previous protocols, in this system, microtubules recruit kinesin motor proteins from solution and place them on a surface. The kinesins will, in turn, facilitate the gliding of the microtubules along the surface before desorbing back into the bulk solution, thus being available to be recruited again. This continuous assembly and disassembly leads to striking dynamic behavior in the system, such as the formation of temporary kinesin trails by gliding microtubules. Several experimental methods will be described throughout this experiment: UV-Vis spectrophotometry will be used to determine the concentration of stock solutions of reagents, coverslips will first be ozone and ultraviolet (UV) treated and then silanized before being mounted into flow cells, and total internal reflection fluorescence (TIRF) microscopy will be used to simultaneously image kinesin motors and microtubule filaments.


Subject(s)
Cytoskeleton/metabolism , Kinesins/metabolism , Microtubules/metabolism , Humans , Molecular Imaging
6.
Nano Lett ; 18(12): 8025-8029, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30484320

ABSTRACT

Recent experimental studies have measured a 30-80% increase of the diffusion coefficient when various enzymes, including aldolase, are catalytically active. This observation has been supported by several theoretical explanations; however, other theoretical studies argue against the possibility of enhanced diffusion, and two of them ascribe the experimental observations to potential artifacts arising in fluorescence correlation spectroscopy (FCS) measurements. Here, we utilized dynamic light scattering (DLS) to measure the diffusion coefficient of aldolase in the absence and presence of its substrate. The DLS measurements have an experimental error of 3% and do not find a statistically significant change of the aldolase diffusion coefficient even at a saturating substrate concentration. This finding lends support to the contention that photophysical artifacts may have affected the FCS measurements and challenges the idea that enzymes can be self-propelled by their catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...