Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Digit Imaging ; 35(4): 970-982, 2022 08.
Article in English | MEDLINE | ID: mdl-35296941

ABSTRACT

Integrating the information coming from biological samples with digital data, such as medical images, has gained prominence with the advent of precision medicine. Research in this field faces an ever-increasing amount of data to manage and, as a consequence, the need to structure these data in a functional and standardized fashion to promote and facilitate cooperation among institutions. Inspired by the Minimum Information About BIobank data Sharing (MIABIS), we propose an extended data model which aims to standardize data collections where both biological and digital samples are involved. In the proposed model, strong emphasis is given to the cause-effect relationships among factors as these are frequently encountered in clinical workflows. To test the data model in a realistic context, we consider the Continuous Observation of SMOking Subjects (COSMOS) dataset as case study, consisting of 10 consecutive years of lung cancer screening and follow-up on more than 5000 subjects. The structure of the COSMOS database, implemented to facilitate the process of data retrieval, is therefore presented along with a description of data that we hope to share in a public repository for lung cancer screening research.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Databases, Factual , Humans , Information Storage and Retrieval , Lung Neoplasms/diagnostic imaging , Smoking
2.
Phys Med ; 90: 23-29, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34530212

ABSTRACT

PURPOSE: With the future goal of defining a large dataset based on low-dose CT with labelled pulmonary lesions for lung cancer screening (LCS) research, the aim of this work is to propose and evaluate into a clinical context a tool for semi-automatic segmentation able to facilitate the process of labels collection from a LCS study (COSMOS, Continuous Observation of SMOking Subjects). METHODS: Considering a preliminary set of manual annotations, a segmentation model based on a 2D-Unet was trained from scratch. Contour quality of the final 2D-Unet was assessed on an internal test set of manual annotations and on a subset of the public available LIDC dataset used as external test set. The tool for semi-automatic segmentation was then designed integrating the tested model into a Graphical User Interface. According to the opinion of two clinical users, the percentage of lesions properly contoured through the tool was quantified (Acceptance Rate, AR). The variability between segmentations derived by the two readers was estimated as mean percentage of difference (MPD) between the two sets of volumes and comparing the likelihood of malignancy derived from Volume Doubling Time (VDT). RESULTS: Performance in test sets were found similar (DICE ~ 0.75(0.15)). Accordingly, a good mean AR (80.1%) resulted from the two readers. Variability in terms of MPD was equal to 23.6% while 2.7% was the VDTs percentage of disagreement. CONCLUSIONS: A semi-automatic segmentation tool was developed and its applicability evaluated into a clinical context demonstrating the efficacy of the tool in facilitating the collection of labelled data.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Humans , Lung , Lung Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...