Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
iScience ; 26(10): 107947, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37841583

ABSTRACT

Invariant Natural Killer T (iNKT) cell activation by α-galactosylceramide (αGC) potentiates cytotoxic immune responses against tumors. However, αGC-induced liver injury is a limiting factor for iNKT-based immunotherapy. Although adrenergic receptor stimulation is an important immunosuppressive signal that curbs tissue damage induced by inflammation, its effect on the antitumor activity of invariant Natural Killer T (iNKT) cells remains unclear. We use mouse models and pharmacological tools to show that the stimulation of the sympathetic nervous system (SNS) inhibits αGC-induced liver injury without impairing iNKT cells' antitumoral functions. Mechanistically, SNS stimulation prevents the collateral effect of TNF-α production by iNKT cells and neutrophil accumulation in hepatic parenchyma. Our results suggest that the modulation of the adrenergic signaling can be a complementary approach to αGC-based immunotherapy to mitigate iNKT-induced liver injury without compromising its antitumoral activity.

2.
Immunother Adv ; 2(1): ltac010, 2022.
Article in English | MEDLINE | ID: mdl-36284839

ABSTRACT

Macrophages are immune cells that are widespread throughout the body and critical for maintaining tissue homeostasis. Their remarkable plasticity allows them to acquire different phenotypes, becoming able either to fight infection (M1-like, classically activated macrophages) or to promote tissue remodeling and repair (M2-like, alternatively activated macrophages). These phenotypes are induced by different cues present in the microenvironment. Among the factors that might regulate macrophage activation are mediators produced by different branches of the nervous system. The regulation exerted by the sympathetic nervous system (SNS) on macrophages (and the immune system in general) is becoming a subject of increasing interest, indeed a great number of articles have been published lately. Catecholamines (noradrenaline and adrenaline) activate α and ß adrenergic receptors expressed by macrophages and shape the effector functions of these cells in contexts as diverse as the small intestine, the lung, or the adipose tissue. Activation of different subsets of receptors seems to produce antagonistic effects, with α adrenergic receptors generally associated with pro-inflammatory functions and ß adrenergic receptors (particularly ß2) related to the resolution of inflammation and tissue remodeling. However, exceptions to this paradigm have been reported, and the factors contributing to these apparently contradictory observations are still far from being completely understood. Additionally, macrophages per se seem to be sources of catecholamines, which is also a subject of some debate. In this review, we discuss how activation of adrenergic receptors modulates macrophage effector functions and its implications for inflammatory responses and tissue homeostasis.

3.
Brain Behav Immun ; 90: 208-215, 2020 11.
Article in English | MEDLINE | ID: mdl-32827702

ABSTRACT

Although several studies demonstrate that stressful situations, such as sleep disturbances, negatively impact the innate and adaptive arms of the immune system, their influence on invariant Natural Killer T (iNKT) cells remains unclear. iNKT cells are CD1d-restricted innate T cells that recognize glycolipid antigens and rapidly produce polarizing cytokines being key players in several immune responses, and a potential target for immunotherapy. iNKT cells differ in several aspects from conventional T lymphocytes, including a unique dependence on CD1d-expressing double-positive (DP) thymocytes for intrathymic maturation. As a consequence of stress, DP thymocytes undergo glucocorticoid-induced apoptosis, which might compromise iNKT developmental pathway. Therefore, we used a paradoxical sleep deprivation (SD) model to determine the impact of sleep disturbance on iNKT cell biology. After 72 h of SD, C57Bl/6 mice exhibited a significant increase in systemic glucocorticoid levels and thymus atrophy. Despite marked decrease in the number of DP thymocytes, the ratio CD1d+/CD1d- was higher in SD mice, and the number of thymic iNKT cells remained unaltered, suggesting that SD did not compromise the iNKT developmental pathway. In contrast, SD reduced hepatic IFN-γ, but not, IL-4-producing iNKT cells, without further effect in the spleen. Despite this fact, SD did not affect stimulation of IFN-γ production by iNKT cells, or cytokine release, in response to α-galactosylceramide, a specific antigen. Furthermore, although SD impaired splenic NK cells activity against tumor cells, it did not affect iNKT cell-specific cytotoxicity. Thus, our study shows that SD-induced stress did not impair the iNKT cells' responses to a cognate antigen.


Subject(s)
Natural Killer T-Cells , Animals , Cytokines , Killer Cells, Natural , Mice , Mice, Inbred C57BL , Sleep, REM , Spleen
4.
Cell Rep ; 28(12): 3120-3130.e5, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533035

ABSTRACT

Noradrenaline (NE), the main neurotransmitter released by sympathetic nerve terminals, is known to modulate the immune response. However, the role of the sympathetic nervous system (SNS) on the development of autoimmune diseases is still unclear. Here, we report that the SNS limits the generation of pathogenic T cells and disease development in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). ß2-Adrenergic receptor (Adrb2) signaling limits T cell autoimmunity in EAE through a mechanism mediated by the suppression of IL-2, IFN-γ, and GM-CSF production via inducible cAMP early repressor (ICER). Accordingly, the lack of Adrb2 signaling in immune cells is sufficient to abrogate the suppressive effects of SNS activity, resulting in increased pathogenic T cell responses and EAE development. Collectively, these results uncover a suppressive role for the SNS in CNS autoimmunity while they identify potential targets for therapeutic intervention.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Immunity, Cellular , Multiple Sclerosis/immunology , Receptors, Adrenergic, beta-2/immunology , Signal Transduction/immunology , Sympathetic Nervous System/immunology , T-Lymphocytes/immunology , Animals , Cytokines/genetics , Cytokines/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Mice , Mice, Knockout , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Receptors, Adrenergic, beta-2/genetics , Signal Transduction/genetics , Sympathetic Nervous System/pathology , T-Lymphocytes/pathology
5.
Semin Immunopathol ; 39(2): 165-176, 2017 02.
Article in English | MEDLINE | ID: mdl-27800584

ABSTRACT

Dendritic cells are of paramount importance bridging innate and adaptive immune responses. Depending on the context, after sensing environmental antigens, commensal microorganisms, pathogenic agents, or antigens from the diet, dendritic cells may drive either different effector adaptive immune responses or tolerance, avoiding tissue damage. Although the plasticity of the immune response and the capacity to regulate itself are considered essential to orchestrate appropriate physiological responses, it is known that the nervous system plays a relevant role controlling immune cell function. Dendritic cells present in the skin, the intestine, and lymphoid organs, besides expressing adrenergic receptors, can be reached by neurotransmitters released by sympathetic fibers innervating these tissues. These review focus on how neurotransmitters from the sympathetic nervous system can modulate dendritic cell function and how this may impact the immune response and immune-mediated disorders.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Immune System/cytology , Immune System/physiology , Neuroimmunomodulation , Sympathetic Nervous System/physiology , Animals , Cytokines/metabolism , Humans , Intestinal Mucosa/metabolism , Intestines/immunology , Intestines/innervation , Lymphoid Tissue/immunology , Lymphoid Tissue/innervation , Lymphoid Tissue/metabolism , Norepinephrine/metabolism , Receptors, Adrenergic/metabolism , Signal Transduction , Skin/immunology , Skin/innervation , Skin/metabolism
7.
PLoS Pathog ; 12(6): e1005698, 2016 06.
Article in English | MEDLINE | ID: mdl-27332899

ABSTRACT

Although CD4+ Foxp3+ T cells are largely described in the regulation of CD4+ T cell responses, their role in the suppression of CD8+ T cell priming is much less clear. Because the induction of CD8+ T cells during experimental infection with Trypanosoma cruzi is remarkably delayed and suboptimal, we raised the hypothesis that this protozoan parasite actively induces the regulation of CD8+ T cell priming. Using an in vivo assay that eliminated multiple variables associated with antigen processing and dendritic cell activation, we found that injection of bone marrow-derived dendritic cells exposed to T. cruzi induced regulatory CD4+ Foxp3+ T cells that suppressed the priming of transgenic CD8+ T cells by peptide-loaded BMDC. This newly described suppressive effect on CD8+ T cell priming was independent of IL-10, but partially dependent on CTLA-4 and TGF-ß. Accordingly, depletion of Foxp3+ cells in mice infected with T. cruzi enhanced the response of epitope-specific CD8+ T cells. Altogether, our data uncover a mechanism by which T. cruzi suppresses CD8+ T cell responses, an event related to the establishment of chronic infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chagas Disease/immunology , Dendritic Cells/immunology , Immune Evasion/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Female , Flow Cytometry , Humans , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Trypanosoma cruzi/immunology
8.
J Immunol ; 196(2): 637-44, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26663782

ABSTRACT

Despite accumulating evidence indicating that neurotransmitters released by the sympathetic nervous system can modulate the activity of innate immune cells, we still know very little about how norepinephrine impacts signaling pathways in dendritic cells (DC) and the consequence of that in DC-driven T cell differentiation. In this article, we demonstrate that ß2-adrenergic receptor (ß2AR) activation in LPS-stimulated DC does not impair their ability to promote T cell proliferation; however, it diminishes IL-12p70 secretion, leading to a shift in the IL-12p70/IL-23 ratio. Although ß2AR stimulation in DC induces protein kinase A-dependent cAMP-responsive element-binding protein phosphorylation, the effect of changing the profile of cytokines produced upon LPS challenge occurs in a protein kinase A-independent manner and, rather, is associated with inhibition of the NF-κB and AP-1 signaling pathways. Moreover, as a consequence of the inverted IL-12p70/IL-23 ratio following ß2AR stimulation, LPS-stimulated DC promoted the generation of CD4(+) T cells that, upon TCR engagement, produced lower amounts of IFN-γ and higher levels of IL-17. These findings provide new insights into molecular and cellular mechanisms by which ß2AR stimulation in murine DC can influence the generation of adaptive immune responses and may explain some aspects of how sympathetic nervous system activity can modulate immune function.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Norepinephrine/immunology , Receptors, Adrenergic, beta-2/immunology , Signal Transduction/immunology , Animals , Blotting, Western , Cell Differentiation/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , NF-kappa B/immunology , Real-Time Polymerase Chain Reaction , Transcription Factor AP-1/immunology
9.
Nat Med ; 21(6): 638-46, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26005855

ABSTRACT

Our understanding of the pathways that regulate lymphocyte metabolism, as well as the effects of metabolism and its products on the immune response, is still limited. We report that a metabolic program controlled by the transcription factors hypoxia inducible factor-1α (HIF1-α) and aryl hydrocarbon receptor (AHR) supports the differentiation of type 1 regulatory T cell (Tr1) cells. HIF1-α controls the early metabolic reprograming of Tr1 cells. At later time points, AHR promotes HIF1-α degradation and takes control of Tr1 cell metabolism. Extracellular ATP (eATP) and hypoxia, linked to inflammation, trigger AHR inactivation by HIF1-α and inhibit Tr1 cell differentiation. Conversely, CD39 promotes Tr1 cell differentiation by depleting eATP. CD39 also contributes to Tr1 suppressive activity by generating adenosine in cooperation with CD73 expressed by responder T cells and antigen-presenting cells. These results suggest that HIF1-α and AHR integrate immunological, metabolic and environmental signals to regulate the immune response.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunity, Cellular , Inflammation/immunology , Receptors, Aryl Hydrocarbon/metabolism , T-Lymphocytes, Regulatory/metabolism , Adult , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , Apyrase/immunology , Apyrase/metabolism , Cell Differentiation/immunology , Female , Hematopoiesis/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Inflammation/metabolism , Inflammation/pathology , Lymphocyte Activation/immunology , Mice , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/immunology , T-Lymphocytes, Regulatory/immunology
10.
Planta Med ; 80(4): 277-82, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24610345

ABSTRACT

Multiple sclerosis is an inflammatory disease of the central nervous system. Chronic pain is one of the main symptoms, affecting many patients. Studies show that the lignans or the apolar extracts of Phyllanthus amarus have antinociceptive effects in different animal models. To evaluate the antihypernociceptive effect of a hexanic extract of P. amarus in experimental autoimmune encephalomyelitis in mice, the chemical composition of the hexanic extract was analyzed by gas chromatography mass spectrometry. After EAE induction, animals were treated with the hexanic extract of P. amarus for 26 consecutive days. Motor coordination and mechanical hypernociception were evaluated on alternate days. The principal lignans found were phyllanthin, niranthin, and 5-demethoxyniranthin. The hexanic extract of P. amarus at a dose of 100, 200, or 400 mg/kg did not affect the development of the disease. The motor coordination and pain threshold of the treated animals were not altered in this experiment. In conclusion, in this test, the hexanic extract of P. amarus did not show evidence of antihypernociceptive activity in experimental autoimmune encephalomyelitis.


Subject(s)
Anisoles/pharmacology , Dioxoles/pharmacology , Encephalomyelitis, Autoimmune, Experimental , Hyperalgesia , Lignans/pharmacology , Multiple Sclerosis/complications , Phyllanthus/chemistry , Plant Extracts/pharmacology , Animals , Anisoles/analysis , Anisoles/therapeutic use , Dioxoles/analysis , Dioxoles/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Lignans/analysis , Lignans/therapeutic use , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Plant Extracts/chemistry , Plant Extracts/therapeutic use
11.
Eur J Immunol ; 44(3): 794-806, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24271843

ABSTRACT

Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-ß, and (iv) limited the capacity of DCs to induce syngeneic CD4(+) T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH 17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.


Subject(s)
Cell Differentiation/genetics , Dendritic Cells/cytology , Dendritic Cells/metabolism , Leptin/deficiency , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Animals , Dendritic Cells/immunology , Immunophenotyping , Leptin/genetics , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Male , Mice , Mice, Knockout , Phenotype , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/cytology , Th17 Cells/immunology
12.
Brain Behav Immun ; 37: 177-86, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24362236

ABSTRACT

Experimental autoimmune encephalomyelitis (EAE) has been widely employed as a model to study multiple sclerosis (MS) and indeed has allowed some important advances in our comprehension of MS pathogenesis. Several pieces of evidence suggest that infiltrating Th1 and Th17 lymphocytes are important players leading to CNS demyelination and lesion during the peak of murine EAE. Subsequently, effector T cell responses rapidly decline and the recovery phase of the disease strongly correlates with the expression of anti-inflammatory cytokines and the enrichment of Foxp3+ regulatory T (Treg) cells within the target organ. However, the mechanisms leading to the increased presence of Treg cells and to the remission phase of the disease are still poorly understood. Recent researches demonstrated that chemically induced amino-acid starvation response might suppress CNS immune activity. Here we verified an important participation of the general control nonrepressible 2 (GCN2), a key regulator kinase of the amino-acid starvation response, in the development of the remission phase of EAE in C57BL/6 mice. By immunizing wild type C57BL/6 (WT) and GCN2 knock-out mice (GCN2 KO) with myelin oligodendrocyte glycoprotein peptide (MOG35-55), it was noticed that GCN2 KO mice did not develop the remission phase of the disease and this was associated with higher levels of CNS inflammation and increased presence of effector T cells (Th1/Th17). These animals also showed lower frequency of Treg cells within the CNS as compared to WT animals. Higher expression of indoleamine 2,3-dioxygenase (IDO) and higher frequency of plasmacytoid dendritic cells (pDCs) were found at the peak of the disease in the CNS of WT animals. Our results suggest that the GCN2 kinase-dependent sensing of IDO activity represents an important trigger to the EAE remission phase. The IDO-mediated immunoregulatory events may include the arresting of effector T cell responses and the differentiation/expansion of Treg cells within the target organ.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/enzymology , Protein Serine-Threonine Kinases/physiology , Animals , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Forkhead Transcription Factors/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Remission, Spontaneous , Spinal Cord/pathology , Th1 Cells/metabolism , Th17 Cells/metabolism
13.
J Immunol ; 190(6): 2614-21, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23390295

ABSTRACT

We have previously shown that regulatory T (Treg) cells that accumulate in the airways of allergic mice upregulate CC-chemokine receptor 4 (CCR4) expression. These Treg cells suppressed in vitro Th2 cell proliferation but not type 2 cytokine production. In the current study, using a well-established murine model of allergic lung disease or oral tolerance, we evaluated the in vivo activity of Treg cells in allergic airway inflammation with special focus on CCR4 function. We found that allergic, but not tolerant, mice treated with anti-CD25 Ab showed increased airway eosinophilia and IL-5- or IL-4-producing Th2 cells when compared with untreated mice. Notably, mice with CCR4 deficiency displayed an augmented airway allergic inflammation compared with wild-type or CCR2 knockout (KO) mice. The allergic phenotype of CCR4KO mice was similar to that observed in anti-CD25-treated mice. The exacerbated allergic inflammation of CCR4KO mice was directly associated with an impaired migration of Treg cells to airways and augmented frequency of pulmonary Th2 cells. Adoptive transfer of CD25(+)CD4(+) T cells expressing high levels of CCR4, but not CCR4KO CD25(+)CD4(+) T cells, attenuated the severe airway Th2 response of CCR4KO mice. Our results show that CCR4 is critically involved in the migration of Treg cells to allergic lungs that, in turn, attenuate airway Th2 activation and allergic eosinophilic inflammation.


Subject(s)
Cell Movement/immunology , Eosinophilia/immunology , Pneumonia/immunology , Receptors, CCR4/physiology , Severity of Illness Index , T-Lymphocytes, Regulatory/immunology , Animals , Eosinophilia/genetics , Eosinophilia/pathology , Female , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Pneumonia/genetics , Pneumonia/pathology , Receptors, CCR4/deficiency , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/pathology , Up-Regulation/genetics , Up-Regulation/immunology
14.
Eur J Immunol ; 43(4): 1001-12, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23436577

ABSTRACT

Beta2-adrenergic receptor (B2AR) signaling is known to impair Th1-cell differentiation and function in a cAMP-dependent way, leading to inhibition of cell proliferation and decreased production of IL-2 and IFN-γ. CD4(+) Foxp3(+) Treg cells play a key role in the regulation of immune responses and are essential for maintenance of self-tolerance. Nevertheless, very little is known about adrenergic receptor expression in Treg cells or the influence of noradrenaline on their function. Here we show that Foxp3(+) Treg cells express functional B2AR. B2AR activation in Treg cells leads to increased intracellular cAMP levels and to protein kinase A (PKA)-dependent CREB phosphorylation. We also found that signaling via B2AR enhances the in vitro suppressive activity of Treg cells. B2AR-mediated increase in Treg-cell suppressive function was associated with decreased IL-2 mRNA levels in responder CD4(+) T cells and improved Treg-cell-induced conversion of CD4(+) Foxp3(-) cells into Foxp3(+) induced Treg cells. Moreover, B2AR signaling increased CTLA-4 expression in Treg cells in a PKA-dependent way. Finally, we found that PKA inhibition totally prevented the B2AR-mediated increase in Treg-cell suppressive function. Our data suggest that sympathetic fibers are able to regulate Treg-cell suppressive activity in a positive manner through B2AR signaling.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Receptors, Adrenergic, beta-2/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , CD4 Antigens/metabolism , CTLA-4 Antigen/immunology , CTLA-4 Antigen/metabolism , Forkhead Transcription Factors/metabolism , Interleukin-2/biosynthesis , Lymphocyte Activation/immunology , Mice , Mice, Knockout
16.
Chem Immunol Allergy ; 98: 222-39, 2012.
Article in English | MEDLINE | ID: mdl-22767066

ABSTRACT

Food allergy accounts for a great number of reactions leading to diminished quality of life in western countries. There has been an abundance of reports of behavioral changes, as well as psychiatric conditions associated with food allergy over the past decades. Most of this field inspired little medical attention for its lack of a solid scientific ground. We review the literature on the association of food allergy and brain activity, leading to changes in emotion and behavior. Moreover, we describe an experimental paradigm employed to dissect the biological relevance of this association. Mice allergic to ovalbumin avoid a palatable sweet solution in order to escape contact with antigen. This choice is associated with increased levels of anxiety, compatible with a conflicting situation. These responses are associated with increased activity in brain areas associated with emotional and affective behavior, which are also important for anxiety and stress responses. Higher levels of corticosterone accompany these changes in behavior. These responses are mediated by specific antibodies and prevented by depletion or immunological tolerance. They are also partially mediated by C-sensitive afferents and mast cells. Far from anecdote, neural repercussions of food allergy should be considered when planning a therapeutic strategy in affected individuals.


Subject(s)
Food Hypersensitivity/immunology , Amygdala/immunology , Amygdala/metabolism , Animals , Antibodies/immunology , Antibodies/metabolism , Brain/metabolism , Food Hypersensitivity/metabolism , Humans , Hypothalamus/immunology , Hypothalamus/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Nerve Fibers/immunology , Nerve Fibers/metabolism , Neuroimmunomodulation , Signal Transduction
17.
Diabetes ; 61(10): 2534-45, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22688334

ABSTRACT

Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-ß1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional ß-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D.


Subject(s)
Adipocytes/transplantation , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Type 1/therapy , Hyperglycemia/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Adipocytes/immunology , Animals , Cell Proliferation , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/immunology , Glucagon-Like Peptide 1/blood , Hyperglycemia/blood , Hyperglycemia/immunology , Insulin/blood , Islet Amyloid Polypeptide/blood , Mice , Mice, Inbred NOD , T-Lymphocytes, Regulatory/immunology
18.
Clin Dev Immunol ; 2012: 721817, 2012.
Article in English | MEDLINE | ID: mdl-22162718

ABSTRACT

Foxp3(+)CD25(+)CD4(+) regulatory T cells are vital for peripheral tolerance and control of tissue inflammation. In this study, we characterized the phenotype and monitored the migration and activity of regulatory T cells present in the airways of allergic or tolerant mice after allergen challenge. To induce lung allergic inflammation, mice were sensitized twice with ovalbumin/aluminum hydroxide gel and challenged twice with intranasal ovalbumin. Tolerance was induced by oral administration of ovalbumin for 5 consecutive days prior to OVA sensitization and challenge. We detected regulatory T cells (Foxp3(+)CD25(+)CD4(+) T cells) in the airways of allergic and tolerant mice; however, the number of regulatory T cells was more than 40-fold higher in allergic mice than in tolerant mice. Lung regulatory T cells expressed an effector/memory phenotype (CCR4(high)CD62L(low)CD44(high)CD54(high)CD69(+)) that distinguished them from naive regulatory T cells (CCR4(int)CD62L(high)CD44(int)CD54(int)CD69(-)). These regulatory T cells efficiently suppressed pulmonary T-cell proliferation but not Th2 cytokine production.


Subject(s)
Asthma/immunology , Cell Proliferation , Cytokines/biosynthesis , Lung/immunology , Pneumonia/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Asthma/pathology , CD4 Antigens/metabolism , Female , Interleukin-2 Receptor alpha Subunit/metabolism , Lung/pathology , Mice , Mice, Inbred BALB C , Pneumonia/pathology , Th2 Cells/immunology , Th2 Cells/metabolism
19.
J Neuroimmunol ; 227(1-2): 10-7, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20580440

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory immune response directed against myelin antigens of the central nervous system. In its murine model, EAE, Th17 cells play an important role in disease pathogenesis. These cells can induce blood-brain barrier disruption and CNS immune cells activation, due to the capacity to secrete high levels of IL-17 and IL-22 in an IL-6+TGF-ß dependent manner. Thus, using the oral tolerance model, by which 200 µg of MOG 35-55 is given orally to C57BL/6 mice prior to immunization, we showed that the percentage of Th17 cells as well as IL-17 secretion is reduced both in the periphery and also in the CNS of orally tolerated animals. Altogether, our data corroborates with the pathogenic role of IL-17 and IFN-γ in EAE, as its reduction after oral tolerance, leads to an overall reduction of pro-inflammatory cytokines, such as IL-1α, IL-6, IL-9, IL-12p70 and the chemokines MIP-1ß, RANTES, Eotaxin and KC in the CNS. It is noteworthy that this was associated to an increase in IL-10 levels. Thus, our data clearly show that disease suppression after oral tolerance induction, correlates with reduction in target organ inflammation, that may be caused by a reduced Th1/Th17 response.


Subject(s)
Allergens/administration & dosage , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Immune Tolerance , Interleukin-17/antagonists & inhibitors , Lymphocyte Depletion , Nerve Tissue Proteins/administration & dosage , T-Lymphocytes, Helper-Inducer/immunology , Administration, Oral , Allergens/immunology , Amino Acid Sequence , Animals , Encephalomyelitis, Autoimmune, Experimental/therapy , Glycoproteins/administration & dosage , Glycoproteins/immunology , Glycoproteins/therapeutic use , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/immunology , Immunosuppressive Agents/therapeutic use , Inflammation/immunology , Inflammation/pathology , Inflammation/therapy , Interleukin-17/metabolism , Lymphocyte Depletion/methods , Male , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Myelin-Oligodendrocyte Glycoprotein , Nerve Tissue Proteins/immunology , Peptide Fragments/administration & dosage , Peptide Fragments/immunology , Peptide Fragments/therapeutic use , T-Lymphocytes, Helper-Inducer/pathology
20.
Cell Res ; 19(4): 399-411, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19255592

ABSTRACT

For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. The Th1/Th2 paradigm implied the existence of two different, mutually regulated, CD4(+) T helper subsets: Th1 cells, driving cell-mediated immune responses involved in tissue damage and fighting infection against intracellular parasites; and Th2 cells that mediate IgE production and are particularly involved in eosinophilic inflammation, allergy and clearance of helminthic infections. A third member of the T helper set, IL-17-producing CD4(+) T cells, now called Th17 cells, was recently described as a distinct lineage that does not share developmental pathways with either Th1 or Th2 cells. The Th17 subset has been linked to autoimmune disorders, being able to produce IL-17, IL-17F and IL-21 among other inflammatory cytokines. Interestingly, it has been reported that there is not only a cross-regulation among Th1, Th2 and Th17 effector cells but there is also a dichotomy in the generation of Th17 and T regulatory cells. Therefore, Treg and Th17 effector cells arise in a mutually exclusive fashion, depending on whether they are activated in the presence of TGF-beta or TGF-beta plus inflammatory cytokines such as IL-6. This review will address the discovery of the Th17 cells, and recent progress on their development and regulation.


Subject(s)
Interleukin-17/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Down-Regulation , Interleukin-23/metabolism , Interleukin-6/metabolism , T-Lymphocyte Subsets/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Transcription, Genetic , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...