Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Psychon Bull Rev ; 25(6): 2267-2273, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29340998

ABSTRACT

Experimental designs used to describe psychological effects on overt human behavior are seldom suited to localize their corresponding neural substrates based on the analysis of stimulus-evoked brain hemodynamic responses. This is because stimuli in behavioral studies are usually separated by intertrial intervals (ITIs) in the order of 1 second or so following a behavioral response, which is notoriously too brief a time to detect a corresponding hemodynamic response. In fact, a solution commonly adopted in neuroimaging studies is to prolong the ITI up to several seconds. In doing so, the consequences of ITI variations between behavioral and neuroimaging design variants are either benignly neglected or explicitly assumed to be negligible. Here, we provide a systematic investigation of the consequence of manipulating ITI in a design optimized to study a well-established and highly replicable psychological phenomenon-the spatial numerical association of response codes (SNARC). The present exploration encompassed standard estimates of the SNARC effect (i.e., on reaction times and accuracy), estimates of ITI effects on the emotional state of participants before and after performing the SNARC task, as well as the degree of perceived task difficulty. The results showed that, in striking contrast to the common wisdom about the nil role of ITI, the substantial number of parametric differences observed between the two ITI conditions suggests that ITI plays a critical role in shaping the meaning of hemodynamic correlate of a psychological, at least the SNARC, effect.


Subject(s)
Brain/blood supply , Hemodynamics/physiology , Neuroimaging , Pattern Recognition, Visual/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Regional Blood Flow/physiology , Association Learning/physiology , Correlation of Data , Emotions/physiology , Female , Humans , Male , Young Adult
2.
Psychon Bull Rev ; 25(2): 688-695, 2018 04.
Article in English | MEDLINE | ID: mdl-29264847

ABSTRACT

Models of the spatial-numerical association of response codes (SNARC) effect-faster responses to small numbers using left effectors, and the converse for large numbers-diverge substantially in localizing the root cause of this effect along the numbers' processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect's cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus-response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.


Subject(s)
Mathematics , Spatial Processing , Adult , Female , Humans , Judgment , Male , Photic Stimulation , Reaction Time , Semantics , Space Perception , Young Adult
3.
Front Hum Neurosci ; 10: 53, 2016.
Article in English | MEDLINE | ID: mdl-26909033

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found between the distance traveled by the guided VB and the corresponding cortical activation. These results confirm the suitability of fNIRS technology to objectively evaluate cortical hemodynamic changes occurring in VR environments. Future studies could give a contribution to a better understanding of the cognitive mechanisms underlying human performance either in expert or non-expert operators during the simulation of different demanding/fatiguing activities.

4.
Neuroimage ; 85 Pt 1: 451-60, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23684867

ABSTRACT

Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11 and 46). The results have indicated that the errors increased between the first and the second level of difficulty of the ISBT, then decreased and remained constant; the returning time progressively increased during the first three levels of difficulty and then remained constant. During the CSBT, the errors and the returning time did not change. In the ISBT, the increase of the first three levels of difficulty was accompanied by a progressive increase in PFC O2Hb and a less consistent decrease in HHb. A tendency to plateau was observable for PFC O2Hb and HHb changes in the fourth level of difficulty of the ISBT, which could be partly explained by a learning effect. A right hemispheric lateralization was not found. A lower amplitude of increase in O2Hb and decrease in HHb was found in the PFC in response to the CSBT with respect to the ISBT. This study has demonstrated that the oxygenation increased over the PFC while performing an ISBT in a semi-immersive VR environment. These data reinforce the involvement of the PFC in attention-demanding balance tasks. Considering the adaptability of this virtual balance task to specific neurological disorders, the absence of motion sensing devices, and the motivating/safe semi-immersive VR environment, the ISBT adopted in this study could be considered valuable for diagnostic testing and for assessing the effectiveness of functional neurorehabilitation.


Subject(s)
Computer Graphics , Functional Neuroimaging/methods , Postural Balance/physiology , Prefrontal Cortex/physiology , Psychomotor Performance/physiology , Spectroscopy, Near-Infrared/methods , User-Computer Interface , Adult , Analysis of Variance , Brain Mapping , Cerebrovascular Circulation/physiology , Data Interpretation, Statistical , Functional Laterality/physiology , Heart Rate/physiology , Hemodynamics/physiology , Hemoglobins/analysis , Hemoglobins/metabolism , Humans , Male , Oxygen Consumption/physiology
5.
Brain Topogr ; 27(3): 353-65, 2014 May.
Article in English | MEDLINE | ID: mdl-24101293

ABSTRACT

The aim of this study was to assess the prefrontal cortex (PFC) oxygenation response to a 5-min incremental tilt board balance task (ITBBT) in a semi-immersive virtual reality (VR) environment driven by a depth-sensing camera. It was hypothesized that the PFC would be bilaterally activated in response to the increase of the ITBBT difficulty, given the PFC involvement in the allocation of the attentional resources to maintain postural control. Twenty-two healthy male subjects were asked to use medial-lateral postural sways to maintain their equilibrium on a virtual tilt board (VTB) balancing over a pivot. When the subject was unable to maintain the VTB angle within ± 35° the VTB became red (error). An eight-channel fNIRS system was employed for measuring changes in PFC oxygenated-deoxygenated hemoglobin (O2Hb-HHb, respectively). Results revealed that the number of the performed board sways and errors augmented with the increasing of the ITBBT difficulty. A PFC activation was observed with a tendency to plateau for both O2Hb-HHb changes within the last 2 min of the task. A significant main effect of the level of difficulty was found in O2Hb and HHb (p < 0.001). The study has demonstrated that the oxygenation increased over the PFC while the subject was performing an ITBBT in a semi-immersive VR environment. This increase was modulated by the task difficulty, suggesting that the PFC is bilaterally involved in attention-demanding tasks. This task could be considered useful for diagnostic testing and functional neurorehabilitation given its adaptability in elderly and in patients with movement disorders.


Subject(s)
Attention/physiology , Motor Activity/physiology , Postural Balance/physiology , Prefrontal Cortex/physiology , Adult , Brain Mapping , Hemoglobins/metabolism , Humans , Male , Neuropsychological Tests , Oxygen Consumption , Oxyhemoglobins/metabolism , Spectroscopy, Near-Infrared , Task Performance and Analysis , Tilt-Table Test , User-Computer Interface
6.
Neuroimage ; 85 Pt 1: 391-9, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23973407

ABSTRACT

Human performance in visual enumeration tasks typically shows two distinct patterns as a function of set size. For small sets, usually up to 4 items, numerosity judgments are extremely rapid, precise and confident, a phenomenon known as subitizing. When this limit is exceeded and serial counting is precluded, exact enumeration gives way to estimation: performance becomes error-prone and more variable. Surprisingly, despite the importance of subitizing and estimation in numerical cognition, only few neuroimaging studies have examined whether the neural activity related to these two phenomena can be dissociated. In the present work, we used multi-channel near-infrared spectroscopy (fNIRS) to measure hemodynamic activity of the bilateral parieto-occipital cortex during a visual enumeration task. Participants had to judge the numerosity of dot arrays and indicate it by means of verbal response. We observed a different hemodynamic pattern in the parietal cortex, both in terms of amplitude modulation and temporal profile, for numerosities below and beyond the subitizing range. Crucially, the neural dissociation between subitizing and estimation was strongest at the level of right IPS. The present findings confirm that fNIRS can be successfully used to detect subtle temporal differences in hemodynamic activity and to produce inferences on the neural mechanisms underlying cognitive functions.


Subject(s)
Cognition/physiology , Functional Neuroimaging/methods , Psychomotor Performance/physiology , Spectroscopy, Near-Infrared/methods , Adult , Brain Mapping , Cerebrovascular Circulation/physiology , Data Interpretation, Statistical , Female , Hemoglobins/analysis , Hemoglobins/metabolism , Humans , Image Processing, Computer-Assisted , Judgment , Male , Mathematics , Photic Stimulation , Young Adult
7.
Front Hum Neurosci ; 7: 925, 2013.
Article in English | MEDLINE | ID: mdl-24427131

ABSTRACT

Encoding, storage and retrieval constitute three fundamental stages in information processing and memory. They allow for the creation of new memory traces, the maintenance and the consolidation of these traces over time, and the access and recover of the stored information from short or long-term memory. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique that measures concentration changes of oxygenated-hemoglobin (O2Hb) and deoxygenated-hemoglobin (HHb) in cortical microcirculation blood vessels by means of the characteristic absorption spectra of hemoglobin in the near-infrared range. In the present study, we monitored, using a 16-channel fNIRS system, the hemodynamic response during the encoding and retrieval processes (EP and RP, respectively) over the prefrontal cortex (PFC) of 13 healthy subjects (27.2 ± 2.6 years) while were performing the "Logical Memory Test" (LMT) of the Wechsler Memory Scale. A LMT-related PFC activation was expected; specifically, it was hypothesized a neural dissociation between EP and RP. The results showed a heterogeneous O2Hb/HHb response over the mapped area during the EP and the RP, with a O2Hb progressive and prominent increment in ventrolateral PFC (VLPFC) since the beginning of the EP. During the RP a broader activation, including the VLPFC, the dorsolateral PFC and the frontopolar cortex, was observed. This could be explained by the different contributions of the PFC regions in the EP and the RP. Considering the fNIRS applicability for the hemodynamic monitoring during the LMT performance, this study has demonstrated that fNIRS could be utilized as a valuable clinical diagnostic tool, and that it has the potential to be adopted in patients with cognitive disorders or slight working memory deficits.

SELECTION OF CITATIONS
SEARCH DETAIL
...