Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Environ Manage ; 356: 120626, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518491

ABSTRACT

Biomass can be used as an energy source to thermochemical conversion processes to biocrude production. However, the supply and dependence on only one biomass for biocrude production can be an obstacle due to its seasonality, availability, and logistics costs. In this way, biomass waste and agroindustrial residues can be mixture and used as feedstock to the hydrothermal co-liquefaction (co-HTL) process as an alternative to obtaining biocrude. In this sense, the present paper analyzed the biocrude yield influence of the co-HTL from a quaternary unprecedented blend of different biomasses, such as sugarcane bagasse, brewer's spent grain (BSG), sludge from a paper recycling mill (PRM), and microalgae (Chlorella vulgaris). In this way, a simplex lattice design was employed and co-HTL experiments were carried out in a 2000 mL high-pressure stirred autoclave reactor under 275 °C for 60 min, considering 15% of feedstock/water ratio. Significant effects in each feedstock and their blends were analyzed aiming to increase biocrude and biochar yield. It was found that the addition of microalgae is only significant when considered more than 50% into the blend with BSG and PRM sludge to increase biocrude yield.


Subject(s)
Charcoal , Chlorella vulgaris , Microalgae , Saccharum , Sewage , Cellulose , Temperature , Microalgae/chemistry , Biomass , Water/chemistry , Biofuels/analysis
2.
Biomass Convers Biorefin ; : 1-16, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36788981

ABSTRACT

The rising demand to settle a sustainable energy source is guiding researchers in the production of biofuels. The liquefaction process is an alternative to obtaining biocrude from different types of renewable biomass and can mitigate environmental impacts. All papers published since 2000, which are related to the hydrothermal liquefaction process that aims to obtain biocrude are analyzed in the present study using the bibliometric approach to provide the selected database. Furthermore, the use of algae biomass in the liquefaction was also a discussed topic considering its high relevance in the process. The focus of the present study was to evaluate the evolution of the current state of the art in these topics and also to indicate trends and courses that it might be taken in the future. The database used in the bibliometric analysis was taken from the Web of Science (WoS) and the papers were selected by two different search equations. With the selected data, the use of BibExcel, VOSviewer, and PowerBi software was useful to guide the discussion and to create graphics and visual networks. As shown in the results, it was noticeable the influence of China and the USA on the field, considering the high number of publications from these countries. Moreover, the main authors were indicated considering their citation numbers, publications, and local h-index factor. Based on the author's keywords, the most significant and recent topics on liquefaction were listed. Among them, technical-economic analysis, nutrient, and energy recovery, response surface methodology, and kinetic model are highlighted. This may indicate a new direction being taken by researchers besides the operational parameters' studies.

SELECTION OF CITATIONS
SEARCH DETAIL