Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Diabetes ; 14(3): 130-146, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-37035220

ABSTRACT

Insulin resistance and pancreatic ß-cell dysfunction are major pathological mechanisms implicated in the development and progression of type 2 diabetes (T2D). Beyond the detrimental effects of insulin resistance, inflammation and oxidative stress have emerged as critical features of T2D that define ß-cell dysfunction. Predominant markers of inflammation such as C-reactive protein, tumor necrosis factor alpha, and interleukin-1ß are consistently associated with ß-cell failure in preclinical models and in people with T2D. Similarly, important markers of oxidative stress, such as increased reactive oxygen species and depleted intracellular antioxidants, are consistent with pancreatic ß-cell damage in conditions of T2D. Such effects illustrate a pathological relationship between an abnormal inflammatory response and generation of oxidative stress during the progression of T2D. The current review explores preclinical and clinical research on the patho-logical implications of inflammation and oxidative stress during the development of ß-cell dysfunction in T2D. Moreover, important molecular mechanisms and relevant biomarkers involved in this process are discussed to divulge a pathological link between inflammation and oxidative stress during ß-cell failure in T2D. Underpinning the clinical relevance of the review, a systematic analysis of evidence from randomized controlled trials is covered, on the potential therapeutic effects of some commonly used antidiabetic agents in modulating inflammatory makers to improve ß-cell function.

2.
Int J Mol Sci ; 19(6)2018 06 09.
Article in English | MEDLINE | ID: mdl-29890717

ABSTRACT

While the Zygomycete fungus Conidiobolus coronatus primarily infects insects, it can be pathogenic to mammals as well, including humans. High variability in the treatment of this fungal infection with currently available drugs, including azole drugs is a very common phenomenon. Azoles bind to the cytochrome P450 monooxygenases (P450s/CYP) including CYP51, a sterol 14-α-demethylase, inhibiting the synthesis of cell membrane ergosterol and thus leading to the elimination of infecting fungi. Despite P450's role as a drug target, to date, no information on C. coronatus P450s has been reported. Genome-wide data mining has revealed the presence of 142 P450s grouped into 12 families and 21 subfamilies in C. coronatus. Except for CYP51, the remaining 11 P450 families are new (CYP5854-CYP5864). Despite having a large number of P450s among entomopathogenic fungi, C. coronatus has the lowest number of P450 families, which suggests blooming P450s. Further analysis has revealed that 79% of the same family P450s is tandemly positioned, suggesting that P450 tandem duplication led to the blooming of P450s. The results of this study; i.e., unravelling the C. coronatus P450 content, will certainly help in designing experiments to understand P450s' role in C. coronatus physiology, including a highly variable response to azole drugs with respect to P450s.


Subject(s)
Conidiobolus/enzymology , Conidiobolus/genetics , Cytochrome P-450 Enzyme System/genetics , Gene Duplication , Amino Acid Sequence , Animals , Conidiobolus/pathogenicity , Cytochrome P-450 Enzyme System/chemistry , Genes, Fungal , Humans , Molecular Sequence Annotation , Multigene Family , Phylogeny
3.
Jundishapur J Microbiol ; 7(4): e9310, 2014 Apr.
Article in English | MEDLINE | ID: mdl-25147701

ABSTRACT

BACKGROUND: Many disease conditions including Staphylococcal infections are becoming increasingly difficult to treat in South Africa due to the surge of vancomycin-oxacillin resistant strains. How widespread this phenomenon is in commensal isolates in the Nkonkobe municipality in the Eastern Cape Province of South Africa is not known, and considering the high level of immunocompromised individuals in the province, this study couldn't have come at a better time. OBJECTIVES: The objective of this study is to evaluate the prevalence of vancomycin and oxacillin co-resistance in methicillin-resistant commensal staphylococci in Nkonkobe municipality, South Africa as part of our larger study on the surveillance of reservoirs of antibiotic resistance in South Africa. MATERIALS AND METHODS: Staphylococcus species were isolated from domestic animals of Nkonkobe municipality, in the Eastern Cape Province of South Africa. The isolates were evaluated for antibiotic susceptibility against a panel of several relevant antibiotics. Specific primer sets were also used for the polymerase chain reaction assay to detect the presence of mecA gene as well as vanA and vanB genes in the genome of resistant Staphylococcus species. RESULTS: A total of 120 Staphylococcus isolates were screened, out of which, 32 (26%) were susceptible to both methicillin and vancomycin, while 12 (10%) had co-resistance to the antibiotics, which is still on the high side, both clinically and epidemiologically. Gentamicin (an aminoglycoside) had a relatively high potency against the isolates with 107 (89.17%) of the bacteria being susceptible to it, while 10 (8.33%) were resistant. On the other hand, erythromycin (a macrolide) was active against 72 (60%) of the isolates, while 5 (4.17%) and 74 (61.67%) of them yielded intermediate and resistant responses, respectively. Similarly, 51 (42.5%) of the isolates were susceptible to rifampicin, while 1 (0.83%) and 17 (14.17%) were intermediate and resistant, respectively. CONCLUSIONS: Ten percent of the isolates were positive for mecA gene among the vancomycin-oxacillin resistant strains, while van gene was not detected in any of the isolates. The data obtained would be useful in clinical control of resistant staphylococcal strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...