Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(12)2021 12 05.
Article in English | MEDLINE | ID: mdl-34943930

ABSTRACT

Experimental models of the central nervous system (CNS) are imperative for developmental and pathophysiological studies of neurological diseases. Among these models, three-dimensional (3D) induced pluripotent stem cell (iPSC)-derived brain organoid models have been successful in mitigating some of the drawbacks of 2D models; however, they are plagued by high organoid-to-organoid variability, making it difficult to compare specific gene regulatory pathways across 3D organoids with those of the native brain. Single-cell RNA sequencing (scRNA-seq) transcriptome datasets have recently emerged as powerful tools to perform integrative analyses and compare variability across organoids. However, transcriptome studies focusing on late-stage neural functionality development have been underexplored. Here, we combine and analyze 8 brain organoid transcriptome databases to study the correlation between differentiation protocols and their resulting cellular functionality across various 3D organoid and exogenous brain models. We utilize dimensionality reduction methods including principal component analysis (PCA) and uniform manifold approximation projection (UMAP) to identify and visualize cellular diversity among 3D models and subsequently use gene set enrichment analysis (GSEA) and developmental trajectory inference to quantify neuronal behaviors such as axon guidance, synapse transmission and action potential. We showed high similarity in cellular composition, cellular differentiation pathways and expression of functional genes in human brain organoids during induction and differentiation phases, i.e., up to 3 months in culture. However, during the maturation phase, i.e., 6-month timepoint, we observed significant developmental deficits and depletion of neuronal and astrocytes functional genes as indicated by our GSEA results. Our results caution against use of organoids to model pathophysiology and drug response at this advanced time point and provide insights to tune in vitro iPSC differentiation protocols to achieve desired neuronal functionality and improve current protocols.


Subject(s)
Brain/metabolism , Cell Differentiation/genetics , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Organoids/metabolism , Transcriptome/genetics , Brain/embryology , Databases, Genetic , Gene Expression Regulation, Developmental , Humans , Neurons/cytology , Neurons/metabolism , Reproduction , Sequence Analysis, RNA , Signal Transduction/genetics , Single-Cell Analysis
2.
ACS Biomater Sci Eng ; 7(5): 1787-1807, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33966381

ABSTRACT

Under the current climate, physicians prescribe antibiotics for treating bacterial infections, and such a limitation to a single class of drugs is disadvantageous since antibiotic-resistant bacteria have adapted to withstanding their stresses. Antibiotic alternatives are sought, and herein metal nanoparticles comprised of the rare earth elements cerium and yttrium were determined to invoke toxicity on methicillin-resistant Staphylococcus aureus (MRSA) and a multi-drug-resistant strain of Escherichia coli (MDR E. coli). Ceria nanoparticles, yttrium-doped ceria nanoparticles, and cerium-doped yttria nanoparticles were fabricated by a wet chemical route, homogeneous precipitation in hexamethylenetetramine (HMT). To demonstrate the drastic variations in nanoparticle structure and toxicity that occur when the synthesis method and solvent are substituted, two additional approaches involving solvothermal and hydrothermal reactions were pursued in the production of yttrium-containing nanoparticles. Intrinsic nanoparticle features of size, morphology, and composition were construed by physiochemical characterizations, which aided in the elaboration of chemical reaction and growth mechanisms. It was determined by in vitro plate count assays that ceria nanoparticles which had been doped using the yttrium metal precursor after 30 min of the HMT reaction, at 500 µg/mL, were the most effective at inhibiting MRSA growth without imposing significant cytotoxicity on human dermal fibroblast cells. A total of 500 µg/mL of cerium- and yttrium-containing nanoparticles, prepared in a 1:1 molar ratio, were similarly biocompatible and antimicrobial, in the case of MDR E. coli. Indeed, as this study showed, nanoalternatives to antibiotics are feasible, adaptable, and can be facilely produced. The possible clinical applications of the rare earth metal nanoparticles are variegated, and ceria and yttria nanoparticles are additionally credited in the literature as dynamic antioxidants, regulators of tissue regeneration, and anticancer agents.


Subject(s)
Anti-Infective Agents , Cerium , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Escherichia coli , Humans , Yttrium
3.
Mater Sci Eng C Mater Biol Appl ; 116: 111149, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32806280

ABSTRACT

Organic-inorganic hybrid coatings deposited on different types of metallic alloys have shown outstanding anticorrosive performance. The incorporation of osteoconductive additives such as hydroxyapatite (HA) and ß-tricalcium phosphate (ß-TCP) into organic-inorganic hybrid coatings is promising to improve the osseointegration and corrosion resistance of Ti6Al4V alloys, which are the most widely used metallic orthopedic and dental implant materials today. Therefore, this study evaluated the capability of poly(methyl methacrylate) (PMMA)-TiO2 and PMMA-ZrO2 hybrid coatings modified with HA and ß-TCP to act as bioactive and corrosion protection coatings for Ti6Al4V alloys. In terms of cell growth and mineralization, osteoblast viability, Ca+2 deposition and alkaline phosphatase assays revealed a significant improvement for the HA and ß-TCP modified coatings, compared to the bare alloy. This can be explained by an increase in nanoscale roughness and associated higher surface free energy, which lead to enhanced protein adsorption to promote osteoblast attachment and functions on the coatings. The effect of HA and ß-TCP additives on the anticorrosive efficiency was studied by electrochemical impedance spectroscopy (EIS) in a simulated body fluid (SBF) solution. The coatings presented a low-frequency impedance modulus of up to 430 GΩ cm2, 5 decades higher than the bare Ti6Al4V alloy. These findings provide clear evidence of the beneficial role of HA and ß-TCP modified hybrid coatings, improving both the biocompatibility and corrosion resistance of the Ti6Al4V alloy.


Subject(s)
Coated Materials, Biocompatible , Durapatite , Polymethyl Methacrylate , Alloys/pharmacology , Calcium Phosphates , Coated Materials, Biocompatible/pharmacology , Corrosion , Materials Testing , Surface Properties , Titanium
4.
Acta Biomater ; 96: 662-673, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31279162

ABSTRACT

Conditions resulting from musculoskeletal deficiencies (MSDs) are wide-ranging and retain the likelihood for restricting motion or producing pain, especially in the lower back, neck, and upper limbs. Engineered scaffold devices are being produced to replace antiquated modalities that suffer from structural and mechanical deficiencies in the treatment of MSDs. Here, as-fabricated Ti-6Al-4V-based Hive™ interbody fusion scaffolds, commercialized by HD Lifesciences LLC, were assayed for their osteogenicity and antibacterial potential using a series of characterization and in vitro tests, as well as by quantitative analyses. A topographical assessment of the Hive™ meshes indicated that the elementally pure substrates are microscopically porous and rough, in addition to displaying structural heterogeneity. Roughness estimations and static contact angle measurements recommended the use of the as-fabricated Ti-6Al-4V substrates for supporting osteoblast attachment, especially, due to the improved surface roughness and wettability values of these scaffolds relative to the unembellished Ti-6Al-4V surfaces. Quantitative correlations relating the surface properties of roughness and energy were applied to predict cellular behaviors. Cell growth suppositions were experimentally corroborated. Critical in vitro data indicated the competencies of the Hive™ scaffolds for promoting the adhesion and proliferation of human fetal osteoblasts (hFOBs), accumulating substantial calcium deposition from metabolizing hFOBs, and restricting the attachment of bacteria. The model system that investigated the pre-adsorption of casein proteins along the Hive™ test substrates additionally furthered the notion that bacterial attachment may be restricted, with short-scale adhesion dynamics serving as the theoretical basis for this hypothesis. In this manner, this study showed that through predictive models and experiments, these novel 3D printed Ti-based scaffolds can increase bone cell while decreasing bacteria functions without using drugs. STATEMENT OF SIGNIFICANCE: Sintered Ti-6Al-4V spinal fusion devices (Hive™) manufactured and marketed by HD Lifesciences LLC were assessed for their biocompatibility and antibacterial performance. A mixed methods approach was employed, whereby quantitative measures were used to predict the ability for Hive™ substrates to adsorb specialized proteins and to restrict bacterial surface colonization. In vitro tests that evaluated bone cell and bacterial adhesion, calcium deposition, and protein adsorption supported quantitative predictions. The data herein presented demonstrate the following: (1) surface energy is an important predictor of implant-cell interactions, (2) strong correlations exist between surface energy and surface roughness, (3) mathematical models can be used to improve and predict implant device perofrmance, and (4) porous, rough, 3D-printed materials perform well in terms of biocompatibility and antimicrobial efficacy.


Subject(s)
Bacteria/growth & development , Models, Biological , Osteoblasts/metabolism , Printing, Three-Dimensional , Tissue Scaffolds/chemistry , Titanium , Alloys , Bacterial Adhesion/drug effects , Calcification, Physiologic/drug effects , Cell Proliferation/drug effects , Humans , Osteoblasts/cytology , Titanium/chemistry , Titanium/pharmacology
5.
Small ; 15(18): e1804247, 2019 05.
Article in English | MEDLINE | ID: mdl-30957977

ABSTRACT

Prevalent research underscores efforts to engineer highly sophisticated nanovesicles that are functionalized to combat antibiotic-resistant bacterial infections, especially those caused by methicillin-resistant Staphylococcus aureus (MRSA), and that aid with wound healing or immunomodulation. This is especially relevant for patients who are susceptible to Staphylococcus aureus infections postoperatively. Here, antibacterial formulations are incorporated into polymeric, biocompatible vesicles called polymersomes (PsNPs) that self-assemble via hydrophobic interactions of admixed aqueous and organic substances. Nano-PsNPs are synthesized using a high molecular weight amphiphilic block copolymer, and are conjugated to include antimicrobial peptides (AMPs) along the peripheral hydrophilic region and silver nanoparticles (AgNPs) inside their hydrophobic corona. In vitro testing on bacterial and human cell lines indicates that finely tuned treatment concentrations of AMP and AgNPs in PsNPs synergistically inhibits the growth of MRSA without posing significant side effects, as compared with other potent treatment strategies. A ratio of silver-to-AMP of about 1:5.8 corresponding to ≈11.6 µg mL-1 of silver nanoparticles and 14.3 × 10-6 m of the peptide, yields complete MRSA inhibition over a 23 h time frame. This bacteriostatic activity, coupled with nominal cytotoxicity toward native human dermal fibroblast cells, extends the potential for AMP/AgNP polymersome therapies to replace antibiotics in the clinical setting.


Subject(s)
Inorganic Chemicals/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Nanoparticles/chemistry , Polymers/pharmacology , Proline/chemistry , Amino Acid Sequence , Bacteria/drug effects , Cell Survival/drug effects , Cells, Cultured , Humans , Inorganic Chemicals/chemistry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Polymers/chemistry
6.
J Hazard Mater ; 373: 50-59, 2019 07 05.
Article in English | MEDLINE | ID: mdl-30903956

ABSTRACT

Overuse and thus a constant presence of antibiotics leads to various environmental hazards and health risks. Thus, accurate sensors are required to determine their presence. In this work, we present a mass-sensitive sensor for the detection of rifampicin. We chose this molecule as it is an important antibiotic for tuberculosis, one of the leading causes of deaths worldwide. Herein, we have prepared a carbon nanotube reinforced with bismuth tungstate nanocomposite material in a well-defined nanosheet morphology using a facile in situ synthesis mechanism. Morphological characterization revealed the presence of bismuth tungstate in the form of square nanosheets embedded in the intricate network of carbon nanotubes, resulting in higher surface roughness of the nanocomposite. The synergy of the composite, so formed, manifested a high affinity for rifampicin as compared to the individual components of the composite. The developed sensor possessed a high sensitivity toward rifampicin with a detection limit of 0.16 µM and excellent specificity, as compared to rifabutin and rifapentine. Furthermore, the sensor yielded statistically good recoveries for the monitoring of rifampicin in human urine samples. This work opens up a new horizon for the exploration of unconventional nanomaterials bearing different morphologies for the detection of pharmaceuticals.


Subject(s)
Anti-Bacterial Agents/analysis , Bismuth/chemistry , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Tungsten Compounds/chemistry , Quartz Crystal Microbalance Techniques
7.
ACS Biomater Sci Eng ; 5(9): 4311-4322, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-33417787

ABSTRACT

Biomimicry strategies, inspired from natural organization of living organisms, are being widely used in the design of nanobiomaterials. Particularly, nonlithographic techniques have shown immense potential in the facile fabrication of nanostructured surfaces at large-scale production. Orthopedic biomaterials or coatings possessing extracellular matrix-like nanoscale features induce desirable interactions between the bone tissue and implant surface, also known as osseointegration. In this study, nanopillared chitosan/gelatin (C/G) films were fabricated using nanoporous anodic alumina molds, and their antibacterial properties as well as osteogenesis potential were analyzed by comparing to the flat C/G films and tissue culture polystyrene as controls. In vitro analysis of the expression of RUNX2, osteopontion, and osteocalcin genes for mesenchymal stem cells as well as osteoblast-like Saos-2 cells was found to be increased for the cells grown on nano C/G films, indicating early-stage osteogenic differentiation. Moreover, the mineralization tests (quantitative calcium analysis and alizarin red staining) showed that nanotopography significantly enhanced the mineralization capacity of both cell lines. This work may provide a new perspective of biomimetic surface topography fabrication for orthopedic implant coatings with superior osteogenic differentiation capacity and fast bone regeneration potential.

8.
Acta Biomater ; 83: 425-434, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30342285

ABSTRACT

The combination of kappa-carrageenan (κ-CG) and hydroxyapatite (HA) to generate a bone substitute material has been underexplored to date. Carrageenans (CGs) have remarkable characteristics such as biocompatibility, hydrophilicity, and structural similarities with natural glycosaminoglycans (GAGs), and they have demonstrated the ability to stimulate cellular adhesion and proliferation. Hydroxyapatite nanoparticles have been one of the most investigated materials for bone regeneration due to their excellent biocompatibility, bioactivity and osteoconductivity. In particular, this study presents an approach for the preparation of new bioactive composites of κ-CG/nHA for numerous bone regeneration applications. We performed a set of in vitro experiments to evaluate the influence of the bone substitutes on human osteoblasts. Cell culture studies indicated that all samples tested were cytocompatible. Relative to control substrates, cellular attachment and proliferation were better on all the scaffold surfaces that were tested. The S2 and S3 samples, those permeated by 1.5 and 2.5 wt% of CG, respectively, exhibited an enhancement in cell spreading capacity compared to the S1 test materials which were comprised of 1 wt% of CG. Excellent osteoblast viability and adhesion were observed for each of the tested materials. Additionally, the bone substitutes developed for this study presented a distinct osteoconductive environment. Data supporting this claim were derived from alkaline phosphatase (ALP) and calcium deposition analyses, which indicated that, compared to the control species, ALP expression and calcium deposition were both improved on test κ-CG/nHA surfaces. In summary, the injectable bone substitute developed here demonstrated great potential for numerous bone regeneration applications, and thus, should be studied further. STATEMENT OF SIGNIFICANCE: The novelty of this work lies in the determination of the in vitro cytocompatibility behavior of carrageenan and hydroxyapatite composite materials used as injectable bone substitutes. This injectable biomaterial can fill in geometric complex defects, and it displays bioactivity as well as high bone regeneration capacity. In this study, we evaluated the behaviors of osteoblast cells in contact with the scaffolds, including cellular adhesion and proliferation, cellular metabolism, and mineralization on the fabricated injectable bone substitutes. The results show than the carrageenan and hydroxyapatite substitutes provided a biomaterial with a great capacity for promoting cellular growth, adhesion, and proliferation, as well as contributing an osteoinductive environment for osteoblast differentiation and osteogenesis.


Subject(s)
Bone Substitutes , Carrageenan , Durapatite , Materials Testing , Nanotubes/chemistry , Osteoblasts/metabolism , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Carrageenan/chemistry , Carrageenan/pharmacology , Cell Adhesion/drug effects , Cell Line , Cell Proliferation/drug effects , Durapatite/chemistry , Durapatite/pharmacology , Humans , Osteoblasts/cytology
9.
Nanoscale ; 10(26): 12228-12255, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29947408

ABSTRACT

Tissue engineering is an emergent and very interesting research field, providing potential solutions for a myriad of challenges in healthcare. Fibrous scaffolds specifically have shown promise as an effective tissue engineering method, as their high length-to-width ratio mimics that of extracellular matrix components, which in turn guides tissue formation, promotes cellular adhesion and improves mechanical properties. In this review paper, we discuss in detail both the importance of fibrous scaffolds for the promotion of tissue growth and the different methods to produce fibrous biomaterials to possess favorable and unique characteristics. Here, we focus on the pressing need to develop biomimetic structures that promote an ideal environment to encourage tissue formation. In addition, we discuss different biomedical applications in which fibrous scaffolds can be useful, identifying their importance, relevant aspects, and remaining significant challenges. In conclusion, we provide comments on the future direction of fibrous scaffolds and the best way to produce them, proposed in light of recent technological advances and the newest and most promising fabrication techniques.


Subject(s)
Biomimetic Materials , Nanofibers , Tissue Engineering , Tissue Scaffolds , Animals , Extracellular Matrix , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...