Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Language
Publication year range
1.
Plants (Basel) ; 12(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37050145

ABSTRACT

The Lluta valley in northern Chile is a hyper-arid region with annual precipitation lower than 1.1 mm, and high levels of boron (B) from alluvial deposits are present together with other salts that originated from the Cretaceous. Under these abiotic conditions, the 'lluteño' maize (Zea mays L.) is of interest because it has adapted to the Lluta valley with high salinity levels and B excess in the soil and irrigation water. Water and salt stress coincide in heavily irrigated hyper-arid agricultural areas, yet they are usually studied in isolation. We investigated in field conditions the combined effects of drought (22 days with no irrigation) under salinity (ECe: 5.5 mS cm-1; Na+: 17.8 meq L-1) and B (21.1 meq L-1) stress on physiology, growth, yield, and hourly water relations. The results allow to hypothesize that the measurement of the pre-dawn water potential represents the balance between the water potential of the soil and the root. Besides, under drought a significant effect of irrigation and time interaction was observed presenting a high differential between the leaf and stem water potential in both phenological stages. Furthermore, a decrease in net assimilation was observed, and it could be explained in part by non-stomatal factors such as the high radiation and temperature observed at the end of the season. Despite the drought, the cobs did not present a significantly lower quality compared to the cobs of plants without stress.

2.
Plants (Basel) ; 9(3)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143321

ABSTRACT

The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels. In the present study the interaction between B and salt was studied after 20 days of treatment at low (100 mM) and high salinity (430 mM NaCl), assessing changes in nitrogen metabolites and in the activity of key nitrogen-assimilating enzymes. Under non-saline conditions, the presence of excessive B favored higher nitrate and ammonium mobilization to leaves, increasing nitrate reductase (NR) activity but not glutamine synthetase (GS). Thus, the increment of nitrogen use efficiency by B application would contribute partially to maintain the biomass production in this ecotype. Positive relationships between NR activity, nitrate, and stomatal conductance were observed in leaves. The increment of major amino acids alanine and serine would indicate a photoprotective role of photorespiration under low-salinity conditions, thus the inhibition of nitrogen assimilation pathway (NR and GS activities) occurred only at high salinity. The role of cytosolic GS regarding the proline accumulation is discussed.

3.
Genes (Basel) ; 9(3)2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558449

ABSTRACT

Long non-coding RNAs (lncRNAs) have been defined as transcripts longer than 200 nucleotides, which lack significant protein coding potential and possess critical roles in diverse cellular processes. Long non-coding RNAs have recently been functionally characterized in plant stress-response mechanisms. In the present study, we perform a comprehensive identification of lncRNAs in response to combined stress induced by salinity and excess of boron in the Lluteño maize, a tolerant maize landrace from Atacama Desert, Chile. We use deep RNA sequencing to identify a set of 48,345 different lncRNAs, of which 28,012 (58.1%) are conserved with other maize (B73, Mo17 or Palomero), with the remaining 41.9% belonging to potentially Lluteño exclusive lncRNA transcripts. According to B73 maize reference genome sequence, most Lluteño lncRNAs correspond to intergenic transcripts. Interestingly, Lluteño lncRNAs presents an unusual overall higher expression compared to protein coding genes under exposure to stressed conditions. In total, we identified 1710 putatively responsive to the combined stressed conditions of salt and boron exposure. We also identified a set of 848 stress responsive potential trans natural antisense transcripts (trans-NAT) lncRNAs, which seems to be regulating genes associated with regulation of transcription, response to stress, response to abiotic stimulus and participating of the nicotianamine metabolic process. Reverse transcription-quantitative PCR (RT-qPCR) experiments were performed in a subset of lncRNAs, validating their existence and expression patterns. Our results suggest that a diverse set of maize lncRNAs from leaves and roots is responsive to combined salt and boron stress, being the first effort to identify lncRNAs from a maize landrace adapted to extreme conditions such as the Atacama Desert. The information generated is a starting point to understand the genomic adaptabilities suffered by this maize to surpass this extremely stressed environment.

4.
Electron. j. biotechnol ; 15(5): 19-19, Sept. 2012. ilus, tab
Article in English | LILACS | ID: lil-657678

ABSTRACT

Adaptation and selection of Arthrospira platensis strains, for cultivation in brackish water with excess boron (B) in the Lluta Valley can become an interesting alternative that would allow to extend these cultures to areas that possess the environmental conditions, but that lack the fresh water needed to do it. Strains TX98 and P88 were evaluated in laboratory conditions with three different media of brackish water and with the white medium, the Zarrouk modified medium (MZM). The growing media with brackish water with a B concentration present in the Lluta River of 20 mgL-1 (B20) and medium with 30 mgL-1 (B30), and 10 mg L-1 of B (B10). The effect of the different media on the growing parameters with a culture temperature of 25 +/- 1ºC in the three treatments, strains TX98 and P88 triplicate, Arthrospira platensis, showed tolerance. It was statistically determined that in the growth, the two strains, the three treatments and in the interrelation of both there were significant differences (p < 0.05). The TX98 strain reached a concentration of 1.139 g L-1 (dry weight) in brackish water with medium B20. Therefore, the highest rate of specific growth (μmax) was obtained with the TX98 strain grown in the brackish medium B30 and the lowest duplication time (0.597 days). Cells grown in brackish water with B had a slightly biochemically modified composition with the white, in relation to the protein content, in the cases in which there are differences in the B content, specifically B30 treatment. For the culture with brackish water from the Lluta River, the TX98 strain is recommended with 10 mg of B using a laboratory to pilot scale.


Subject(s)
Boron , Microalgae , Saline Waters , Spirulina , Chile , Cyanobacteria
5.
J Plant Physiol ; 167(1): 54-60, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19720429

ABSTRACT

The lack of consensus about the mutual relations between salinity and boron (B) toxicity with respect to the physiological response of plants necessitates investigation of the interactions of soluble B with salinity. In this investigation, the effect of B was compared with Ca in order to elucidate whether the two nutrients have similar effects and/or to elucidate a relationship under salinity. Following addition of B or Ca, salinity was applied to tomato plants and the cell wall and plasma membrane permeability, measured as water permeability and electrolyte leakage, in relation to amino acid and ion cell wall composition, were determined. As the relationship between B and salinity was complex, several hypotheses are established. The increase of aquaporin functionality due to the presence of B and Ca compared with NaCl-treated plants could be the most feasible, whereas there is currently no satisfactory explanation for the results for the cell wall amino acid composition. In addition, the elemental composition results revealed that, in addition the known interactions between B and Ca with respect to cell wall stability, Mg and Mn were also increased in NaCl+B and NaCl+Ca treatments, suggesting their possible involvement in the cell wall function necessary for plant growth.


Subject(s)
Boron/toxicity , Calcium/metabolism , Salinity , Solanum lycopersicum/drug effects , Solanum lycopersicum/physiology , Amino Acids/metabolism , Biomass , Cell Wall/drug effects , Cell Wall/metabolism , Electrolytes/metabolism , Elements , Solanum lycopersicum/growth & development , Osmosis/drug effects , Permeability/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Protoplasts/drug effects , Protoplasts/physiology , Sodium Chloride/pharmacology , Water/physiology
6.
Physiol Plant ; 132(4): 479-90, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18334001

ABSTRACT

Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L(0)), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl-treated plants in agreement with the L(0) measurements. However, in the H3BO3-treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl- and H3BO3+ NaCl-treated plants was observed with respect to untreated and H3BO3-treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.


Subject(s)
Aquaporins/metabolism , Boric Acids/metabolism , Plant Roots/metabolism , Proton-Translocating ATPases/metabolism , Sodium Chloride/metabolism , Zea mays/metabolism , Cell Membrane/enzymology
7.
Plant Signal Behav ; 3(10): 844-5, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19704850

ABSTRACT

Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...