Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 95(3): 253-8, 2011 Jul 12.
Article in English | MEDLINE | ID: mdl-21932538

ABSTRACT

Edwardsiella tarda is an enterobacterial fish pathogen that causes mortality in various fish species worldwide. In this study, we analyzed the intraspecific variability in a collection of E. tarda strains isolated from turbot. To do this we employed 4 polymerase chain reaction (PCR)-based methods: (1) random amplified polymorphic DNA (RAPD), (2) enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR), (3) repetitive extragenic palindromic-PCR (REP-PCR) and (4) BOX-PCR. E. tarda isolates from different hosts were also included for comparison. E. tarda strains from turbot showed high molecular homogeneity when RAPD (primers P3 and P6), ERIC-PCR and BOX-PCR were employed. However, with regard to the REP-PCR and RAPD (primers P4 and P5) techniques, different genetic groups could be established within these isolates using either technique. The 2 RAPD types presented an 85% similarity, while those obtained with REP-PCR showed 74% similarity. Based on the results obtained, although a high genetic homogeneity was found in turbot isolates, the RAPD test (with primers P4 and P5) and REP-PCR were capable of discrimination within these strains, and they are therefore considered the most appropriate typing methods for studies of edwardsiellosis in turbot.


Subject(s)
Edwardsiella tarda/genetics , Enterobacteriaceae Infections/veterinary , Fish Diseases/microbiology , Flatfishes , Genetic Variation , Animals , Enterobacteriaceae Infections/microbiology , Phylogeny , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Random Amplified Polymorphic DNA Technique/methods , Random Amplified Polymorphic DNA Technique/veterinary
2.
Dis Aquat Organ ; 93(3): 207-14, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21516973

ABSTRACT

We investigated 11 strains of Yersinia ruckeri, the causative agent of enteric redmouth disease (ERM), that had been isolated from Atlantic salmon Salmo salar L. farmed in Chile and previously vaccinated against ERM. Phylogenetic analysis of the 16S rRNA gene sequences confirmed the identification of the salmon isolates as Y. ruckeri. A comparative analysis of the biochemical characteristics was made by means of traditional and commercial miniaturised methods. All studied isolates were motile and Tween 80 positive, and were identified as biotype 1. In addition, drug susceptibility tests determined high sensitivity to sulphamethoxazole/trimethroprim, oxytetracycline, ampicillin and enrofloxacin in all isolates. Serological assays showed the presence of O1a, O1b and O2b serotypes, with a predominance of the O1b serotype in 9 strains. Analysis of the lipopolysaccharide profiles and the correspondent immunoblot confirmed these results. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of the outer membrane proteins revealed that all Chilean strains had profiles with a molecular weight range between 34 and 55 kDa, with 3 distinct groups based on differences in the major bands. Genotyping analyses by enterobacterial repetitive intergenic consensus (ERIC-) and repetitive extragenic palindromic (REP-)PCR techniques clearly indicated intraspecific genetic diversity among Chilean Y. ruckeri strains.


Subject(s)
Fish Diseases/microbiology , Salmo salar , Yersinia Infections/veterinary , Yersinia ruckeri/genetics , Animals , Chile/epidemiology , Fish Diseases/epidemiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Yersinia Infections/epidemiology , Yersinia Infections/microbiology , Yersinia ruckeri/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...