Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 14(1)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38255748

ABSTRACT

Non-concentrated algae storage can bridge the period between algae harvesting and processing while avoiding the stress conditions associated with the concentration step required for concentrate storage. This study aimed to examine organic matter losses during the non-concentrated storage of Microchloropsis gaditana at pilot-scale. Algae cultures (400-500 L) were stored for up to 12 days either at an 8 °C target temperature or at 19 °C as the average temperature. The centrifugation yield of stored algal cultures decreased from day 5 or day 8 onwards for all storage conditions. After 12 days, the centrifugation yields were between 57% and 93% of the initial yields. Large differences in centrifugation yields were noted between the algae batches. The batch-to-batch difference outweighed the effect of storage temperature, and the highest yield loss was observed for the 8 °C cooled algae batch. The analysis of stored algae before and after centrifugation suggested that the decreasing yields were not related to respiration losses, but rather, the decreasing efficiency with which organic matter is collected during the centrifugation step.

2.
Foods ; 12(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37893770

ABSTRACT

Microalgae are a rich resource of lipids, proteins, carbohydrates and pigments with nutritional and health benefits. They increasingly find use as ingredients in functional foods and feeds as well as in cosmetics and agricultural products including biostimulants. One of their distinct advantages is their ability to grow on wastewaters and other waste streams, and they are considered an environmentally friendly and cheap method to recover nutrients and remove pollutants from the environment. However, there are limits concerning their applications if grown on certain waste streams. Within, we collate an overview of existing algal applications and current market scenarios for microalgal products as foods and feeds along with relevant legislative requirements concerning their use in Europe and the United States. Microalgal compounds of interest and their extraction and processing methodologies are summarized, and the benefits and caveats of microalgae cultivated in various waste streams and their applications are discussed.

3.
Bioengineering (Basel) ; 10(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37237670

ABSTRACT

The temporary storage of wet algae concentrates enables the decoupling in time of algae harvests and their biorefinery. However, the impact of cultivation and of the harvest conditions on algae quality during preservation is largely unknown. This study aimed to determine the impact of nutrient limitation and of harvest methods on the preservation of Chlorella vulgaris biomass. Algae were either well-fed until harvest or received no nutrients for one week, and were harvested by either batch or continuous centrifugation. The organic acid formation, lipid levels, and lipolysis were monitored. Nutrient limitation had a large impact and resulted in lower pH values (4.9 ± 0.4), high levels of lactic acid and acetic acid, and a slightly higher degree of lipid hydrolysis. Concentrates of well-fed algae had a higher pH (7.4 ± 0.2) and another pattern of fermentation products with mainly acetic acid, succinic acid, and, to a smaller extent, lactic acid and propionic acid. The effect of the harvest method was smaller, with, most often, higher lactic acid and acetic acid levels for algae harvested by continuous centrifugation than for those obtained by batch centrifugation. In conclusion, nutrient limitation, a well-known method to enhance algae lipid levels, can impact several quality attributes of algae during their wet storage.

4.
Foods ; 10(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34359386

ABSTRACT

This study aimed to map the nutritional profile and bioactivities of five microalgae that can be grown in Northwest Europe or areas with similar cultivation conditions. Next to the biochemical composition, the in vitro digestibility of carbohydrates, proteins, and lipids was studied for Chlamydomonas nivalis, Porphyridium purpureum, Chlorella vulgaris, Nannochloropsis gaditana, and Scenedesmus species biomass. These microalgae were also assessed for their ability to inhibit the angiotensin-1-converting enzyme (ACE-1, EC 3.4.15.1), which is known to play a role in the control of blood pressure in mammals. Large differences in organic matter solubility after digestion suggested that a cell disruption step is needed to unlock the majority of the nutrients from N. gaditana and Scenedesmus species biomass. Significant amounts of free glucose (16.4-25.5 g glucose/100 g dry algae) were detected after the digestion of C. nivalis, P. purpureum, and disrupted Scenedesmus. The fatty acid profiles showed major variations, with particularly high Ω-3 fatty acid levels found in N. gaditana (5.5 ± 0.5 g/100 g dry algae), while lipid digestibility ranged from 33.3 ± 6.5% (disrupted N. gaditana) to 67.1 ± 11.2% (P. purpureum). C. vulgaris and disrupted N. gaditana had the highest protein content (45-46% of dry matter), a nitrogen solubility after digestion of 65-71%, and the degree of protein hydrolysis was determined as 31% and 26%, respectively. Microalgae inhibited ACE-1 by 73.4-87.1% at physiologically relevant concentrations compared to a commercial control. These data can assist algae growers and processors in selecting the most suitable algae species for food or feed applications.

5.
Int J Biol Macromol ; 165(Pt B): 3206-3214, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33181213

ABSTRACT

Chitin was collected and extracted along different lifecycle stages of the Black Soldier Fly (BSF) (larvae, prepupae, pupae, flies, shedding & cocoons). The chitin content in the collected biomass ranged between 8% and 24%, with sheddings and cocoons being most rich in chitin. Purified chitin was subjected to a physicochemical evaluation based on FTIR, XRD, and TGA as well as a deacetylation step. The data indicated that BSF chitin was α-chitin with FTIR profiles matching closely to shrimp chitin and showing some differences compared to squid pen chitin (ß-chitin). Small physicochemical differences were observed among the different BSF samples. Prepupae and cocoon chitin was more crystalline while chitin from larvae and sheddings had a lower thermal degradation temperature. In addition, sheddings were more difficult to purify. Further processing to chitosan showed that a deacetylation degree of 89% could be obtained for all samples after 3 h, although sheddings were found to be less reactive in the deacetylation process. Overall, the small differences in physicochemical properties that were detected between the BSF chitin samples did not prevent further processing of chitin to chitosan with the same degree of deacetylation via the same treatment.


Subject(s)
Chitin/chemistry , Chitosan/chemistry , Diptera/chemistry , Animals , Chitin/isolation & purification , Chitin/ultrastructure , Decapodiformes/chemistry , Larva/chemistry , Pupa/chemistry , Spectroscopy, Fourier Transform Infrared
6.
Foods ; 9(4)2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32218377

ABSTRACT

Protein hydrolysates from lesser mealworm (Alphitobius diaperinus, LM) were obtained by enzymatic hydrolysis with protease from Bacillus licheniformis. A preliminary test performed for five hours of hydrolysis generated an insect protein hydrolysate with 15% of degree of hydrolysis (DH), optimum solubility property and oil holding capacity, but emulsifying and foaming ability were completely impaired. In order to investigate the potential implication of DH on techno-functional properties, a set of protein hydrolysates with a different DH was obtained by sub-sampling at different time points during three hours of enzymatic hydrolysis process. An increase in DH% had positive effects on the solubility property and oil holding ability, while a reduced emulsifying ability was observed up to five hours of hydrolysis. These results demonstrated that the enzymatic hydrolysis, if performed under controlled conditions and not for a long period, represents a valid method to extract high quality protein from insects with tailored techno-functionality, in order to produce tailored ingredients for feed and food purpose.

7.
Insects ; 11(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192166

ABSTRACT

Insects are gaining interest as an alternative protein source for feed/food purposes. Although the lesser mealworm (LM) is commercially produced for human consumption, published data on its nutrient composition is scarce. This study reports on LM larvae reared on 18 different diets composed of side-streams to (1) determine the nutritional composition of the larvae and (2) study the effect of dietary changes on the larval nutrient composition. The LM larvae proved to be of good nutritional value with essential amino acids profiles comparable with that of beef and linoleic acid (C18:2) was the most dominant essential fatty acids in the larvae. The side-stream based diets varied on dry matter basis in protein (16-34%) and lipid content (2-19%). The nutrient content of the larvae reared on diets that supported good growth ranged between 37% and 49% of protein, 22% and 26% of lipid and 4% to 6% of chitin on dry matter basis. No significant correlations were identified between the larval protein or lipid content and that of the diet, but it was found between the diet nutrients and larval growth. Based on larval growth data and economic considerations, diets composed of wheat middlings with a 10-15% inclusion of rapeseed meal were identified as suitable feed for LM. Highest larval yields were obtained with diets containing 15-22% of proteins and 5-10% of lipids.

8.
Carbohydr Res ; 488: 107899, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31981987

ABSTRACT

Insects are considered a promising alternative protein source for food and feed, but contain significant amounts of chitin, often undesirable due to indigestibility, disagreeable texture and negative effect on nutrients intake. Fractionation strategies are thus increasingly being applied to isolate and valorize chitin separately. The analysis of chitin generally requires an intensive pretreatment to remove impurities, and derivatization to generate sufficient detector response. In this work, a liquid chromatography method, without pretreatment nor derivatization, was developed for the simultaneous determination of chitin content and degree of acetylation in non-purified samples of black soldier fly (BSF) larvae. The method is found to be more suitable, compared to traditional methods, for assessing high degrees of acetylation. For the first time, the degree of acetylation of BSF chitin (81 ± 2%) is reported. Additionally, the chitin content of BSF soft tissues is estimated at approximately 20% of the total chitin content (8.5 ± 0.1%).


Subject(s)
Chitin/chemistry , Chitin/isolation & purification , Simuliidae/chemistry , Acetylation , Animals , Chromatography, Liquid , Larva
9.
Insects ; 11(2)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31979388

ABSTRACT

Insects are attracting increased attention in western countries as a protein source for feed and food industries. Currently, insect farmers use high-quality (cereal-based) diets. Part of the ingredients in these diets can also be used directly in food applications. To avoid competition and improve the sustainable and economical aspect of insect rearing, a search for alternative insect diets is ongoing. Side-streams from the agri-food sector offer potential. The lesser mealworm (Alphitobius diaperinus) is an insect that is commercially reared on large scale for food application. The current paper reports on six agri-food side-streams that were included in the diet of the lesser mealworm. The impact of 29 diets (single side-streams or mixtures) on the larvae growth was evaluated by monitoring the larval yield, efficiency of conversion of ingested feed, and larval weight. The larvae were able to grow on all diets, but differences in growth were observed. Two side-streams, wheat middlings and rapeseed meal, were proven to support good larval performance when used as a single ingredient. A combination of these two with brewery grains as moisture source provided (1) the best larval growth and (2) the most economically profitable diet. In conclusion, this study illustrates successful rearing of the lesser mealworm on side-stream-based diets.

10.
Molecules ; 23(8)2018 Jul 25.
Article in English | MEDLINE | ID: mdl-30046024

ABSTRACT

Algal lipids have gained wide interest in various applications ranging from biofuels to nutraceuticals. Given their complex nature composed of different lipid classes, a deep knowledge between extraction conditions and lipid characteristics is essential. In this paper, we investigated the influence of different pretreatments on lipid extraction with supercritical CO2 by a lipidomic approach. Pretreatment was found to double the total extraction yield, thereby reaching 23.1 wt.% comparable to the 26.9 wt.% obtained with chloroform/methanol. An increase in acylglycerides was concurrently observed, together with a nearly doubling of free fatty acids indicative of partial hydrolysis. Moreover, an alteration in the distribution of glyco- and phospholipids was noted, especially promoting digalactosyldiglycerides and phosphatidylcholine as compared to monogalactosyldiglycerides and phosphatidylglycerol. At optimized conditions, supercritical CO2 extraction provided a lipid extract richer in neutral lipids and poorer in phospholipids as compared to chloroform/methanol, though with a very similar fatty acid distribution within each lipid class.


Subject(s)
Carbon Dioxide/chemistry , Complex Mixtures/chemistry , Glycolipids/analysis , Phospholipids/analysis , Solvents/chemistry , Stramenopiles/chemistry , Biomass , Chloroform/chemistry , Chromatography, High Pressure Liquid , Chromatography, Supercritical Fluid , Fatty Acids/analysis , Hydrolysis , Mass Spectrometry , Methanol/chemistry , Phosphatidylcholines/analysis
11.
Sci Total Environ ; 596-597: 169-177, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28431360

ABSTRACT

cis-1,2-Dichloroethene (cis-DCE) and trichloroethene (TCE) are persistent, toxic and mobile pollutants in groundwater systems. They are both conducive to reductive dehalogenation and to oxidation by permanganate. In this study, the potential of dual element (C, Cl) compound specific isotope analyses (CSIA) for distinguishing between chemical oxidation and anaerobic reductive dechlorination of cis-DCE and TCE was investigated. Well-controlled cis-DCE degradation batch tests gave similar carbon isotope enrichment factors εC (‰), but starkly contrasting dual element isotope slopes Δδ13C/Δδ37Cl for permanganate oxidation (εC=-26‰±6‰, Δδ13C/Δδ37Cl≈-125±47) compared to reductive dechlorination (εC=-18‰±4‰, Δδ13C/Δδ37Cl≈4.5±3.4). The difference can be tracked down to distinctly different chlorine isotope fractionation: an inverse isotope effect during chemical oxidation (εCl=+0.2‰±0.1‰) compared to a large normal isotope effect in reductive dechlorination (εCl=-3.3‰±0.9‰) (p≪0.05). A similar trend was observed for TCE. The dual isotope approach was evaluated in the field before and up to 443days after a pilot scale permanganate injection in the subsurface. Our study indicates, for the first time, the potential of the dual element isotope approach for distinguishing cis-DCE (and TCE) concentration drops caused by dilution, oxidation by permanganate and reductive dechlorination both at laboratory and field scale.

12.
Environ Sci Pollut Res Int ; 23(6): 5960-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26604198

ABSTRACT

Impacts of subsurface biogeochemical processes over time have always been a concern for the long-term performance of zero valent iron (Fe(0))-based permeable reactive barriers (PRBs). To evaluate the biogeochemical impacts, laboratory experiments were performed using flow-through glass columns for 210 days at controlled temperature (20 °C). Two different particle sizes of Fe(0) were used in the columns, and to simulate indigenous microbial activity, extra carbon source was provided in the two columns (biotic columns) and the remaining two columns were kept abiotic using gamma radiations. Heavy metals (Zn, As) were removed efficiently in all the columns, and no exhaustion of treatment capability or clogging was observed during our experimental duration. Newly formed Fe mineral phases and precipitates were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and micro-XRF techniques in solid phase at the end of the experiment. In addition, 16S rRNA gene extraction was used for microbial community identification in biotic columns. During the incubation, microbial population shifted in favor of Desulfosporosinus species (sulfate-reducing bacteria) from initial dominance of Acidithiobacillus ferrooxidans in sediments. Dominant mineral phases detected in biotic columns were mackinawite (FeS) and sulfate green rust, while in abiotic columns, magnetite/maghemite phases were more prevalent.


Subject(s)
Groundwater , Iron/chemistry , Minerals , Water Purification/methods , Carbon , Environmental Microbiology , Ferric Compounds , Ferrosoferric Oxide , Ferrous Compounds , RNA, Ribosomal, 16S , Sulfates/chemistry , X-Ray Diffraction
13.
Environ Sci Technol ; 49(12): 7073-81, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26000605

ABSTRACT

Biodegradation is one of the most favored and sustainable means of removing organic pollutants from contaminated aquifers but the major steering factors are still surprisingly poorly understood. Growing evidence questions some of the established concepts for control of biodegradation. Here, we critically discuss classical concepts such as the thermodynamic redox zonation, or the use of steady state transport scenarios for assessing biodegradation rates. Furthermore, we discuss if the absence of specific degrader populations can explain poor biodegradation. We propose updated perspectives on the controls of biodegradation in contaminant plumes. These include the plume fringe concept, transport limitations, and transient conditions as currently underestimated processes affecting biodegradation.


Subject(s)
Bacteria/metabolism , Groundwater/microbiology , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Electrons , Oxidation-Reduction
14.
Chemosphere ; 134: 338-45, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25973858

ABSTRACT

The release of fine zerovalent iron (ZVI) particles in the environment after being introduced for in-situ treatment of compounds like chlorinated aliphatic hydrocarbons (CAHs) may raise questions toward environmental safety, especially for nanoscale materials. Classical single-species ecotoxicity tests do focus on aerobic conditions and are only relevant for the scenario when ZVI-particles reach surface water. Herein, we present an alternative approach where a CAH-degrading mixed bacterial culture was used as test-organisms relevant for the anaerobic subsurface. The impact of different ZVI particles on the bacterial culture was evaluated mainly by quantifying ATP, a reporter molecule giving a general indication of the microbial activity. These lab-scale batch tests were performed in liquid medium, without protecting and buffering aquifer material, as such representing worst-case scenario. The activity of the bacterial culture was negatively influenced by nanoscale zerovalent iron at doses as low as 0.05 g L(-1). On the other hand, concentrations up to 2 g L(-1) of several different types of microscale zerovalent iron (mZVI) particles stimulated the activity. However, very high doses of 15-30 g L(-1) of mZVI showed an inhibiting effect on the bacterial community. Negative effects of ZVIs were confirmed by H2 accumulation in the batch reactors and the absence of lactate consumption. Observed inhibition also corresponded to a pH increase above 7.5, explicable by ZVI corrosion that was found to be dose-dependent. The obtained results suggest that low doses of mZVIs will not show severe inhibition effects on the microbial community once used for in-situ treatment of CAHs.


Subject(s)
Environmental Restoration and Remediation/methods , Hydrocarbons/metabolism , Iron/chemistry , Water Pollutants, Chemical/metabolism , Anaerobiosis , Bacteria , Biodegradation, Environmental , Corrosion , Environment , Groundwater/chemistry , Halogenation , Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
15.
Environ Sci Technol ; 49(9): 5593-600, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25884287

ABSTRACT

The injection of microscale zerovalent iron (mZVI) particles for groundwater remediation has received much interest in recent years. However, to date, monitoring of mZVI particle injection is based on chemical analysis of groundwater and soil samples and thus might be limited in its spatiotemporal resolution. To overcome this deficiency, in this study, we investigate the application of complex electrical conductivity imaging, a geophysical method, to monitor the high-pressure injection of mZVI in a field-scale application. The resulting electrical images revealed an increase in the induced electrical polarization (∼20%), upon delivery of ZVI into the targeted area, due to the accumulation of metallic surfaces at which the polarization takes place. Furthermore, larger changes (>50%) occurred in shallow sediments, a few meters away from the injection, suggesting the migration of particles through preferential flowpaths. Correlation of the electrical response and geochemical data, in particular the analysis of recovered cores from drilling after the injection, confirmed the migration of particles (and stabilizing solution) to shallow areas through fractures formed during the injection. Hence, our results demonstrate the suitability of the complex conductivity imaging method to monitor the transport of mZVI during subsurface amendment in quasi real-time.


Subject(s)
Electric Conductivity , Environmental Restoration and Remediation , Groundwater/chemistry , Imaging, Three-Dimensional , Iron/chemistry , Belgium , Hydrocarbons, Chlorinated/analysis , Solutions
16.
J Contam Hydrol ; 173: 38-58, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25528244

ABSTRACT

In this study a numerical groundwater reactive transport model of a shallow groundwater aquifer contaminated with volatile organic compounds is developed. In addition to advective-dispersive transport, the model includes contaminant release from source areas, natural attenuation, abiotic degradation by a permeable reactive barrier at the site, and dilution by infiltrating rain. Aquifer heterogeneity is parameterized using pilot points for hydraulic conductivity, specific yield and groundwater recharge. A methodology is developed and applied to estimate the large number of parameters from the limited data at the field site (groundwater levels, groundwater concentrations of multiple chemical species, point-scale measurements of soil hydraulic conductivity, and lab-scale derived information on chemical and biochemical reactions). The proposed methodology relies on pilot point parameterization of hydraulic parameters and groundwater recharge, a regularization procedure to reconcile the large number of spatially distributed model parameters with the limited field data, a step-wise approach for integrating the different data sets into the model, and high performance computing. The methodology was proven to be effective in reproducing multiple contaminant plumes and in reducing the prior parameter uncertainty of hydraulic conductivity and groundwater recharge. Our results further indicate that contaminant transport predictions are strongly affected by the choice of the groundwater recharge model and flow parameters should be identified using both head and concentration measurements.


Subject(s)
Groundwater/chemistry , Models, Theoretical , Volatile Organic Compounds/chemistry , Water Movements , Belgium , Hydrology , Rain , Soil/chemistry , Water Pollutants, Chemical/chemistry
17.
Biodegradation ; 25(4): 493-504, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25025097

ABSTRACT

This study aimed at monitoring the dynamics of phylogenetic and catabolic genes of a dechlorinating enrichment culture before, during, and after complete dechlorination of chlorinated compounds. More specifically, the effect of 40 µM trichloroethene (TCE) and 5.6 mM lactate on the gene abundance and activity of an enrichment culture was investigated for 40 days. Although tceA and vcrA gene copy numbers were relatively stable in DNA extracts over time, tceA and vcrA mRNA abundances were upregulated from undetectable levels to 2.96 × and 6.33 × 104 transcripts/mL, respectively, only after exposure to TCE and lactate. While tceA gene transcripts decreased over time with TCE dechlorination, the vcrA gene was expressed steadily even when the concentration of vinyl chloride was at undetectable levels. In addition, ratios between catabolic and phylogenetic genes indicated that tceA and vcrA gene carrying organisms dechlorinated TCE and its produced daughter products, while vcrA gene was mainly responsible for the dechlorination of the lower VC concentrations in a later stage of degradation.


Subject(s)
Chloroflexi/drug effects , Chloroflexi/genetics , Genes, Bacterial/drug effects , Trichloroethylene/pharmacology , Adenosine Triphosphate/metabolism , Biodegradation, Environmental/drug effects , Ethylenes/metabolism , Gene Expression Regulation, Bacterial/drug effects , Halogenation , Methane/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal, 16S/genetics
18.
J Contam Hydrol ; 164: 88-99, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24963597

ABSTRACT

A pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56µm-diameter mZVI (~70gL(-1)) was suspended in 1.5m(3) of guar gum (~7gL(-1)) solution and injected into the test area. In order to deliver the guar gum stabilized mZVI slurry, one direct push bottom-up injection (Geoprobe) was performed with injections at 5 depths between 10.5 and 8.5m bgs. The direct push technique was preferred above others (e.g. injection at low flow rate via screened wells) because of the limited hydraulic conductivity of the aquifer, and to the large size of the mZVI particles. A final heterogeneous distribution of the mZVI in the porous medium was observed explicable by preferential flow paths created during the high pressure injection. The maximum observed delivery distance was 2.5m. A significant decrease in 1,1,1-TCA concentrations was observed in close vicinity of spots where the highest concentration of mZVI was observed. Carbon stable isotope analysis (CSIA) yielded information on the success of the abiotic degradation of 1,1,1-TCA and indicated a heterogeneous spatio-temporal pattern of degradation. Finally, the obtained results show that mZVI slurries stabilized by guar gum can be prepared at pilot scale and directly injected into low permeable aquifers, indicating a significant removal of 1,1,1-TCA.


Subject(s)
Environmental Restoration and Remediation/methods , Galactans/chemistry , Iron/chemistry , Mannans/chemistry , Plant Gums/chemistry , Trichloroethanes/chemistry , Water Pollutants, Chemical/chemistry , Belgium , Groundwater , Pilot Projects , Porosity
19.
J Hazard Mater ; 270: 18-26, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24525160

ABSTRACT

In this study, the aging behavior of microscale zerovalent iron (mZVI) particles was investigated by quantifying the hydrogen gas generated by anaerobic mZVI corrosion in batch degradation experiments. Granular iron and nanoscale zerovalent iron (nZVI) particles were included in this study as controls. Firstly, experiments in liquid medium (without aquifer material) were performed and revealed that mZVI particles have approximately a 10-30 times lower corrosion rate than nZVI particles. A good correlation was found between surface area normalized corrosion rate (RSA) and reaction rate constants (kSA) of PCE, TCE, cDCE and 1,1,1-TCA. Generally, particles with higher degradation rates also have faster corrosion rates, but exceptions do exists. In a second phase, the hydrogen evolution was also monitored during batch tests in the presence of aquifer material and real groundwater. A 4-9 times higher corrosion rate of mZVI particles was observed under the natural environment in comparison with the aquifer free artificial condition, which can be attributed to the low pH of the aquifer and its buffer capacity. A corrosion model was calibrated on the batch experiments to take into account the inhibitory effects of the corrosion products (dissolved iron, hydrogen and OH(-)) on the iron corrosion rate.


Subject(s)
Hydrogen/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Corrosion , Groundwater/chemistry
20.
Water Res ; 51: 64-72, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24388832

ABSTRACT

Batch microcosms were setup to determine the impact of different sized zero valent iron (Fe(0)) particles on microbial sulfate reduction during the in situ bio-precipitation of metals. The microcosms were constructed with aquifer sediment and groundwater from a low pH (3.1), heavy-metal contaminated aquifer. Nano (nFe(0)), micro (mFe(0)) and granular (gFe(0)) sized Fe(0) particles were added to separate microcosms. Additionally, selected microcosms were also amended with glycerol as a C-source for sulfate-reducing bacteria. In addition to metal removal, Fe(0) in microcosms also raised the pH from 3.1 to 6.5, and decreased the oxidation redox potential from initial values of 249 to -226 mV, providing more favorable conditions for microbial sulfate reduction. mFe(0) and gFe(0) in combination with glycerol were found to enhance microbial sulfate reduction. However, no sulfate reduction occurred in the controls without Fe(0) or in the microcosm amended with nFe(0). A separate dose test confirmed the inhibition for sulfate reduction in presence of nFe(0). Hydrogen produced by Fe(0) was not capable of supporting microbial sulfate reduction as a lone electron donor in this study. Microbial analysis revealed that the addition of Fe(0) and glycerol shifted the microbial community towards Desulfosporosinus sp. from a population initially dominated by low pH and metal-resisting Acidithiobacillus ferrooxidans.


Subject(s)
Acidithiobacillus/metabolism , Geologic Sediments/microbiology , Groundwater/microbiology , Metal Nanoparticles/chemistry , Peptococcaceae/metabolism , Sulfates/metabolism , Water Purification/methods , Acidithiobacillus/genetics , Base Sequence , Belgium , Cluster Analysis , DNA Primers/genetics , Iron/chemistry , Iron/metabolism , Molecular Sequence Data , Oxidation-Reduction , Peptococcaceae/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...