Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1141228, 2023.
Article in English | MEDLINE | ID: mdl-37051527

ABSTRACT

Introduction: The reliable and accurate detection of rare circulating tumor cells (CTCs) from cancer patient blood samples promises advantages in both research and clinical applications. Numerous CTC detection methods have been explored that rely on either the physical properties of CTCs such as density, size, charge, and/or their antigen expression profiles. Multiple factors can influence CTC recovery including blood processing method and time to processing. This study aimed to examine the accuracy and sensitivity of an enrichment-free method of isolating leukocytes (AccuCyte® system) followed by immunofluorescence staining and high-resolution imaging (CyteFinder® instrument) to detect CTCs. Method: Healthy human blood samples, spiked with cancer cells from cancer cell lines, as well as blood samples obtained from 4 subjects diagnosed with cancer (2 pancreatic, 1 thyroid, and 1 small cell lung) were processed using the AccuCyte-CyteFinder system to assess recovery rate, accuracy, and reliability over a range of processing times. Results: The AccuCyte-CyteFinder system was highly accurate (95.0%) at identifying cancer cells in spiked-in samples (in 7.5 mL of blood), even at low spiked-in numbers of 5 cells with high sensitivity (90%). The AccuCyte-CyteFinder recovery rate (90.9%) was significantly higher compared to recovery rates obtained by density gradient centrifugation (20.0%) and red blood cell lysis (52.0%). Reliable and comparable recovery was observed in spiked-in samples and in clinical blood samples processed up to 72 hours post-collection. Reviewer analysis of images from spiked-in and clinical samples resulted in high concordance (R-squared value of 0.998 and 0.984 respectively). Discussion: The AccuCyte-CyteFinder system is as an accurate, sensitive, and clinically practical method to detect and enumerate cancer cells. This system addresses some of the practical logistical challenges in incorporating CTCs as part of routine clinical care. This could facilitate the clinical use of CTCs in guiding precision, personalized medicine.

2.
Int J Mol Sci ; 23(3)2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35163592

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type, characterized by a dismal prognosis due to late diagnosis, frequent metastases, and limited therapeutic response to standard chemotherapy. Circulating tumor cells (CTCs) are a rare subset of tumor cells found in the blood of cancer patients. CTCs has the potential utility for screening, early and definitive diagnosis, prognostic and predictive assessment, and offers the potential for personalized management. However, a gold-standard CTC detection and enrichment method remains elusive, hindering comprehensive comparisons between studies. In this review, we summarize data regarding the utility of CTCs at different stages of PDAC from early to metastatic disease and discuss the molecular profiling and culture of CTCs. The characterization of CTCs brings us closer to defining the specific CTC subpopulation responsible for metastasis with the potential to uncover new therapies and more effective management options for PDAC.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Pancreatic Ductal , Neoplastic Cells, Circulating/metabolism , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/blood , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/therapy , Humans , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/therapy , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...