Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biochem Cell Biol ; 37(4): 901-8, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15694848

ABSTRACT

In order to gain insights into the mechanism of phototoxicity of the neuroleptic drugs fluphenazine, perphenazine and thioridazine in cultured cells, studies were performed with murine 3T3 fibroblasts, aimed at identifying some cellular targets responsible for photoinduced cell death and possible cytotoxic reactive species involved in the photosensitization process. 3T3 fibroblasts incubated with 5 microM drugs and irradiated with UVA light (up to 8 J/cm2) underwent cell death, the extent of which depended on light dose. Of the three drugs, fluphenazine exhibited the highest phototoxicity and 100% cell death was achieved with a light dose of 5 J/cm2. Superoxide dismutase and alpha-tocopherol exerted a dose-dependent protective effect against drug phototoxicity, whereas N-acetylcysteine failed to do so. These findings indicate that superoxide anion and other free radical intermediates, generated in lipophilic cellular environments, play a role in photoinduced toxicity. Phototreatment of drug-loaded cells induces release of the cytosolic enzyme lactate dehydrogenase and causes loss of activity of mitochondrial NADH dehydrogenase, indicating that plasma membrane and mitochondria are among the targets of the phototoxicity of these drugs.


Subject(s)
Antipsychotic Agents/toxicity , Cell Membrane/drug effects , Fluphenazine/toxicity , Mitochondria/drug effects , Perphenazine/toxicity , Thioridazine/toxicity , Ultraviolet Rays , 3T3 Cells , Animals , Cell Membrane/radiation effects , Mice , Mitochondria/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...