Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 372(6545): 948-952, 2021 05 28.
Article in English | MEDLINE | ID: mdl-33958483

ABSTRACT

Quantum walks are the quantum mechanical analog of classical random walks and an extremely powerful tool in quantum simulations, quantum search algorithms, and even for universal quantum computing. In our work, we have designed and fabricated an 8-by-8 two-dimensional square superconducting qubit array composed of 62 functional qubits. We used this device to demonstrate high-fidelity single- and two-particle quantum walks. Furthermore, with the high programmability of the quantum processor, we implemented a Mach-Zehnder interferometer where the quantum walker coherently traverses in two paths before interfering and exiting. By tuning the disorders on the evolution paths, we observed interference fringes with single and double walkers. Our work is a milestone in the field, bringing future larger-scale quantum applications closer to realization for noisy intermediate-scale quantum processors.

2.
Phys Rev Lett ; 126(12): 120606, 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33834797

ABSTRACT

Symmetries are well known to have had a profound role in our understanding of nature and are a critical design concept for the realization of advanced technologies. In fact, many symmetry-broken states associated with different phases of matter appear in a variety of quantum technology applications. Such symmetries are normally broken in spatial dimension, however, they can also be broken temporally leading to the concept of discrete time symmetries and their associated crystals. Discrete time crystals (DTCs) are a novel state of matter emerging in periodically driven quantum systems. Typically, they have been investigated assuming individual control operations with uniform rotation errors across the entire system. In this work we explore a new paradigm arising from nonuniform rotation errors, where two dramatically different phases of matter coexist in well defined regions of space. We consider a quantum spin network possessing long-range interactions where different driving operations act on different regions of that network. What results from its inherent symmetries is a system where one region is a DTC, while the second is ferromagnetic. We envision our work to open a new avenue of research on chimeralike phases of matter where two different phases coexist in space.

3.
Phys Rev Lett ; 125(17): 170503, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156665

ABSTRACT

We report the analog simulation of an ergodic-localized junction by using an array of 12 coupled superconducting qubits. To perform the simulation, we fabricated a superconducting quantum processor that is divided into two domains: one is a driven domain representing an ergodic system, while the second is localized under the effect of disorder. Because of the overlap between localized and delocalized states, for a small disorder there is a proximity effect and localization is destroyed. To experimentally investigate this, we prepare a microwave excitation in the driven domain and explore how deep it can penetrate the disordered region by probing its dynamics. Furthermore, we perform an ensemble average over 50 realizations of disorder, which clearly shows the proximity effect. Our work opens a new avenue to build quantum simulators of driven-disordered systems with applications in condensed matter physics and material science.

4.
Sci Adv ; 6(42)2020 Oct.
Article in English | MEDLINE | ID: mdl-33067242

ABSTRACT

Crystals arise as the result of the breaking of a spatial translation symmetry. Similarly, translation symmetries can also be broken in time so that discrete time crystals appear. Here, we introduce a method to describe, characterize, and explore the physical phenomena related to this phase of matter using tools from graph theory. The analysis of the graphs allows to visualizing time-crystalline order and to analyze features of the quantum system. For example, we explore in detail the melting process of a minimal model of a period-2 discrete time crystal and describe it in terms of the evolution of the associated graph structure. We show that during the melting process, the network evolution exhibits an emergent preferential attachment mechanism, directly associated with the existence of scale-free networks. Thus, our strategy allows us to propose a previously unexplored far-reaching application of time crystals as a quantum simulator of complex quantum networks.

5.
Science ; 358(6367): 1175-1179, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29191906

ABSTRACT

Quantized eigenenergies and their associated wave functions provide extensive information for predicting the physics of quantum many-body systems. Using a chain of nine superconducting qubits, we implement a technique for resolving the energy levels of interacting photons. We benchmark this method by capturing the main features of the intricate energy spectrum predicted for two-dimensional electrons in a magnetic field-the Hofstadter butterfly. We introduce disorder to study the statistics of the energy levels of the system as it undergoes the transition from a thermalized to a localized phase. Our work introduces a many-body spectroscopy technique to study quantum phases of matter.

6.
Phys Rev Lett ; 118(4): 049903, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28186792

ABSTRACT

This corrects the article DOI: 10.1103/PhysRevLett.117.250401.

7.
Phys Rev Lett ; 117(25): 250401, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-28036226

ABSTRACT

We provide an analytic solution to the problem of system-bath dynamics under the effect of high-frequency driving that has applications in a large class of settings, such as driven-dissipative many-body systems. Our method relies on discrete symmetries of the system-bath Hamiltonian and provides the time evolution operator of the full system, including bath degrees of freedom, without weak-coupling or Markovian assumptions. An interpretation of the solution in terms of the stroboscopic evolution of a family of observables under the influence of an effective static Hamiltonian is proposed, which constitutes a flexible simulation procedure of nontrivial Hamiltonians. We instantiate the result with the study of the spin-boson model with time-dependent tunneling amplitude. We analyze the class of Hamiltonians that may be stroboscopically accessed for this example and illustrate the dynamics of system and bath degrees of freedom.

8.
Phys Rev E ; 94(3-1): 032123, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27739785

ABSTRACT

In this work we study a one-dimensional lattice of Lipkin-Meshkov-Glick models with alternating couplings between nearest-neighbors sites, which resembles the Su-Schrieffer-Heeger model. Typical properties of the underlying models are present in our semiclassical-topological hybrid system, allowing us to investigate an interplay between semiclassical bifurcations at mean-field level and topological phases. Our results show that bifurcations of the energy landscape lead to diverse ordered quantum phases. Furthermore, the study of the quantum fluctuations around the mean-field solution reveals the existence of nontrivial topological phases. These are characterized by the emergence of localized states at the edges of a chain with free open-boundary conditions.

9.
Article in English | MEDLINE | ID: mdl-26764791

ABSTRACT

Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.

10.
Article in English | MEDLINE | ID: mdl-25375472

ABSTRACT

We study the quantum critical behavior of networks consisting of Lipkin-Meshkov-Glick models with an anisotropic ferromagnetic coupling. We focus on the low-energy properties of the system within a mean-field approach and the quantum corrections around the mean-field solution. Our results show that the weak-coupling regime corresponds to the paramagnetic phase when the local field dominates the dynamics, but the local anisotropy leads to the existence of an exponentially degenerate ground state. In the strong-coupling regime, the ground state is twofold degenerate and possesses long-range magnetic ordering. Analytical results for a network with the ring topology are obtained.

11.
Article in English | MEDLINE | ID: mdl-23767490

ABSTRACT

We establish a set of nonequilibrium quantum phase transitions in the Lipkin-Meshkov-Glick model under monochromatic modulation of the interparticle interaction. We show that the external driving induces a rich phase diagram that characterizes the multistability in the system. Interestingly, the number of stable configurations can be tuned by increasing the amplitude of the driving field. Furthermore, by studying the quantum evolution, we demonstrate that the system exhibits a set of quantum phases that correspond to dynamically stabilized states.


Subject(s)
Models, Chemical , Models, Molecular , Phase Transition , Quantum Theory , Computer Simulation
12.
Phys Rev Lett ; 108(4): 043003, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22400835

ABSTRACT

We establish a set of nonequilibrium quantum phase transitions in the Dicke model by considering a monochromatic nonadiabatic modulation of the atom-field coupling. For weak driving the system exhibits a set of sidebands which allow the circumvention of the no-go theorem which otherwise forbids the occurrence of superradiant phase transitions. At strong driving we show that the system exhibits a rich multistable structure and exhibits both first- and second-order nonequilibrium quantum phase transitions.

SELECTION OF CITATIONS
SEARCH DETAIL
...